Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S2)
specjalność: energetyka konwencjonalna

Sylabus przedmiotu Zaawansowana termodynamika:

Informacje podstawowe

Kierunek studiów Energetyka
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Zaawansowana termodynamika
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Techniki Cieplnej
Nauczyciel odpowiedzialny Anna Majchrzycka <Anna.Majchrzycka@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA1 30 1,50,50zaliczenie
wykładyW1 30 1,50,50egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawy termodynamiki.
W-2Podstawy fizyki.
W-3Podstawy chemii.
W-4Podstawy matematyki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studenta z podstawowymi zagadnieniami z termodynamiki chemicznej oraz termodynamiki procesów nierównowagowych.
C-2Zapoznanie studenta z obliczeniami z zakresu termodynamiki chemicznej oraz termodynamiki nierównowagowej.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Obliczenia z zakresu termodynamiki chemicznej , obliczanie maksymalnej sprawności egzergetycznej generatora termoelektrycznego oraz ziębiarki.30
30
wykłady
T-W-1Podstawy termodynamiki chemicznej Entalpia, entropia , entalpia swobodna reakcji chemicznej standardowej (stan standardowy reakcja chemiczna standardowa,entalpia i entropia reakcji chemicznej standardowej,praca maksymalna reakcji standardowej, wpływ ciśnienia na pracę maksymalną reakcji izobaryczno-izotermicznej, reakcja tworzenia). Obliczanie entalpii w procesach chemicznych ( substancje odniesienia, zastosowanie entalpii tworzenia, wartość opałowa i entalpia spalania ,entalpia dewaluacji). III Zasada termodynamiki (równania Gibbsa –Helmholza,teoremat Nernsta,postulat Plancka, podstawowe konsekwencje III ZT. Egzergia a nieosiągalność zera bezwzględnego. Podstawy termodynamiki procesów nierównowagowych ( zjawiska sprzężone, równania bilansowe, równania fenomenologiczne, stany stacjonarne, dyfuzja izotermiczna w układach ciągłych, lokalne sformułowanie II Zasady Termodynamiki, IV Zasady Termodynamiki, procesy nierównowagowe ustalone, termodynamika zjawisk termoelektrycznych : zjawiska Peltiera i Thomsona, generatory i ziębiarki termoelektryczne).30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestniczenie w ćwiczeniach audytoryjnych.30
A-A-2Praca własna studenta10
A-A-3Konsultacje5
45
wykłady
A-W-1Uczestniczenie w wykładach.30
A-W-2Praca własna studenta, przygotowanie do zajęć10
A-W-3Konsultacje5
45

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny, prezentacja multimedialna.
M-2Ćwczenia audytoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Pisemne zaliczanie wykładu.
S-2Ocena podsumowująca: Pisemne zaliczenie ćwiczeń audytoryjnych.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_2A_C01_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie: zdefiniować podstawowe pojęcia z zakresu termodynamiki technicznej, chemicznej oraz termodynamiki procesów nierównowagowych. Powinien być w stanie sformułować zasady termodynamiki oraz wytłumaczyć ich konsekwencje. Powinien być w stanie opisać jakość energii oraz objaśnić ogólne zasady zmniejszania niedoskonałości termodynamicznej procesów cieplnych
ENE_2A_W07, ENE_2A_W08T2A_W04, T2A_W07C-2, C-1T-W-1, T-A-1M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_2A_C01_U01
W wyniku przeprowadzonych zajęć student powinien wykazać się umiejętnościami kognitywnymi oraz praktycznymi w zakresie termodynamiki technicznej, chemicznej oraz termodynamiki procesów nierównowagowych. Student powinien wykazć się znajomościa ogólnych zasad zmiejszania niedoskonałości termodynamicznej procesów cieplnych.
ENE_2A_U01, ENE_2A_U04, ENE_2A_U10T2A_U01, T2A_U03, T2A_U04, T2A_U07, T2A_U12, T2A_U18C-1, C-2T-W-1, T-A-1M-1S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ENE_2A_C01_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie: zdefiniować podstawowe pojęcia z zakresu termodynamiki technicznej, chemicznej oraz termodynamiki procesów nierównowagowych. Powinien być w stanie sformułować zasady termodynamiki oraz wytłumaczyć ich konsekwencje. Powinien być w stanie opisać jakość energii oraz objaśnić ogólne zasady zmniejszania niedoskonałości termodynamicznej procesów cieplnych
2,0mniej niż 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,0powyżej 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,560 - 70% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,075 - 80% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,580 – 90% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
5,090 – 100% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ENE_2A_C01_U01
W wyniku przeprowadzonych zajęć student powinien wykazać się umiejętnościami kognitywnymi oraz praktycznymi w zakresie termodynamiki technicznej, chemicznej oraz termodynamiki procesów nierównowagowych. Student powinien wykazć się znajomościa ogólnych zasad zmiejszania niedoskonałości termodynamicznej procesów cieplnych.
2,0mniej niż 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,0powyżej 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,560 - 70% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,075 - 80% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,580 – 90% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
5,090-100% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia

Literatura podstawowa

  1. Antoszczyszyn M., Sokołowa E., Straszko J., Termodynamika chemiczna układów rzeczywistych, Politechniki Szczecińskiej, Szczecin, 1991
  2. Demichowicz-Pigoniowa J., Obliczenia fizykochemiczne: termodynamika chemiczna i nauka o fazach ., PWN, Warszawa, 1980
  3. Gumiński K., Termodynamika procesów nieodwracalnych ., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2003
  4. Kartuszyńska A., Lelczuk CH.A., Stromberg A.G, Zbiór zadań z termodynamiki chemicznej, PWN, Warszawa, 1977
  5. Staronka A., Chemia fizyczna, 1994
  6. Szarawara J., Termodynamika chemiczna stosowana, WNT, Warszawa, 2007, 4 uzup.
  7. Szargut J., Termodynamika techniczna, WNT, Warszawa, 1995
  8. Szargut., Ziębik A., Kozioł J., Janiczek R., Kurpisz K., Chmielniak T., Wilk R., Racjonalizacja uzytkowania energii w zakłądach przemysłowych. Poradnik audytora energetycznego., Fundacja poszanowania energii., Warszawa, 1994

Literatura dodatkowa

  1. Atkins P.W., Chemia fizyczna, PWN, Warszawa, 2012
  2. Michałowski S., Wańkowicz K., Termodynamika procesowa, PWN, Warszawa, 1993

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Obliczenia z zakresu termodynamiki chemicznej , obliczanie maksymalnej sprawności egzergetycznej generatora termoelektrycznego oraz ziębiarki.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawy termodynamiki chemicznej Entalpia, entropia , entalpia swobodna reakcji chemicznej standardowej (stan standardowy reakcja chemiczna standardowa,entalpia i entropia reakcji chemicznej standardowej,praca maksymalna reakcji standardowej, wpływ ciśnienia na pracę maksymalną reakcji izobaryczno-izotermicznej, reakcja tworzenia). Obliczanie entalpii w procesach chemicznych ( substancje odniesienia, zastosowanie entalpii tworzenia, wartość opałowa i entalpia spalania ,entalpia dewaluacji). III Zasada termodynamiki (równania Gibbsa –Helmholza,teoremat Nernsta,postulat Plancka, podstawowe konsekwencje III ZT. Egzergia a nieosiągalność zera bezwzględnego. Podstawy termodynamiki procesów nierównowagowych ( zjawiska sprzężone, równania bilansowe, równania fenomenologiczne, stany stacjonarne, dyfuzja izotermiczna w układach ciągłych, lokalne sformułowanie II Zasady Termodynamiki, IV Zasady Termodynamiki, procesy nierównowagowe ustalone, termodynamika zjawisk termoelektrycznych : zjawiska Peltiera i Thomsona, generatory i ziębiarki termoelektryczne).30
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestniczenie w ćwiczeniach audytoryjnych.30
A-A-2Praca własna studenta10
A-A-3Konsultacje5
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestniczenie w wykładach.30
A-W-2Praca własna studenta, przygotowanie do zajęć10
A-W-3Konsultacje5
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_2A_C01_W01W wyniku przeprowadzonych zajęć student powinien być w stanie: zdefiniować podstawowe pojęcia z zakresu termodynamiki technicznej, chemicznej oraz termodynamiki procesów nierównowagowych. Powinien być w stanie sformułować zasady termodynamiki oraz wytłumaczyć ich konsekwencje. Powinien być w stanie opisać jakość energii oraz objaśnić ogólne zasady zmniejszania niedoskonałości termodynamicznej procesów cieplnych
Odniesienie do efektów kształcenia dla kierunku studiówENE_2A_W07Ma rozszerzoną i uporządkowana wiedzę z zakresu hydromechaniki, termodynamiki i przekazywania ciepła
ENE_2A_W08Ma uporządkowaną i podbudowaną teoretycznie wiedzę w zakresie komputerowego wspomagania obliczeń i podejmowania decyzji w energetyce
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T2A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Zapoznanie studenta z obliczeniami z zakresu termodynamiki chemicznej oraz termodynamiki nierównowagowej.
C-1Zapoznanie studenta z podstawowymi zagadnieniami z termodynamiki chemicznej oraz termodynamiki procesów nierównowagowych.
Treści programoweT-W-1Podstawy termodynamiki chemicznej Entalpia, entropia , entalpia swobodna reakcji chemicznej standardowej (stan standardowy reakcja chemiczna standardowa,entalpia i entropia reakcji chemicznej standardowej,praca maksymalna reakcji standardowej, wpływ ciśnienia na pracę maksymalną reakcji izobaryczno-izotermicznej, reakcja tworzenia). Obliczanie entalpii w procesach chemicznych ( substancje odniesienia, zastosowanie entalpii tworzenia, wartość opałowa i entalpia spalania ,entalpia dewaluacji). III Zasada termodynamiki (równania Gibbsa –Helmholza,teoremat Nernsta,postulat Plancka, podstawowe konsekwencje III ZT. Egzergia a nieosiągalność zera bezwzględnego. Podstawy termodynamiki procesów nierównowagowych ( zjawiska sprzężone, równania bilansowe, równania fenomenologiczne, stany stacjonarne, dyfuzja izotermiczna w układach ciągłych, lokalne sformułowanie II Zasady Termodynamiki, IV Zasady Termodynamiki, procesy nierównowagowe ustalone, termodynamika zjawisk termoelektrycznych : zjawiska Peltiera i Thomsona, generatory i ziębiarki termoelektryczne).
T-A-1Obliczenia z zakresu termodynamiki chemicznej , obliczanie maksymalnej sprawności egzergetycznej generatora termoelektrycznego oraz ziębiarki.
Metody nauczaniaM-1Wykład informacyjny, prezentacja multimedialna.
Sposób ocenyS-1Ocena podsumowująca: Pisemne zaliczanie wykładu.
Kryteria ocenyOcenaKryterium oceny
2,0mniej niż 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,0powyżej 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,560 - 70% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,075 - 80% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,580 – 90% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
5,090 – 100% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_2A_C01_U01W wyniku przeprowadzonych zajęć student powinien wykazać się umiejętnościami kognitywnymi oraz praktycznymi w zakresie termodynamiki technicznej, chemicznej oraz termodynamiki procesów nierównowagowych. Student powinien wykazć się znajomościa ogólnych zasad zmiejszania niedoskonałości termodynamicznej procesów cieplnych.
Odniesienie do efektów kształcenia dla kierunku studiówENE_2A_U01Potrafi uzyskiwać informacje z literatury, baz danych i innych źródeł; także w języku obcym w zakresie energetyki, potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągać wnioski oraz formułować i uzasadniać opinie
ENE_2A_U04Potrafi przygotować i przedstawić prezentację na temat realizacji zadania projektowego lub badawczego oraz przeprowadzić dyskusję dotyczącą przedstawionej prezentacji
ENE_2A_U10Potrafi ocenić przydatność metod i narzędzi wykorzystywanych w pomiarach, diagnostyce i wspomaganiu decyzji związanych z procesami energetycznymi
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągać wnioski oraz formułować i wyczerpująco uzasadniać opinie
T2A_U03potrafi przygotować opracowanie naukowe w języku polskim i krótkie doniesienie naukowe w języku obcym, uznawanym za podstawowy dla dziedzin nauki i dyscyplin naukowych właściwych dla studiowanego kierunku studiów, przedstawiające wyniki własnych badań naukowych
T2A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T2A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T2A_U12potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
Cel przedmiotuC-1Zapoznanie studenta z podstawowymi zagadnieniami z termodynamiki chemicznej oraz termodynamiki procesów nierównowagowych.
C-2Zapoznanie studenta z obliczeniami z zakresu termodynamiki chemicznej oraz termodynamiki nierównowagowej.
Treści programoweT-W-1Podstawy termodynamiki chemicznej Entalpia, entropia , entalpia swobodna reakcji chemicznej standardowej (stan standardowy reakcja chemiczna standardowa,entalpia i entropia reakcji chemicznej standardowej,praca maksymalna reakcji standardowej, wpływ ciśnienia na pracę maksymalną reakcji izobaryczno-izotermicznej, reakcja tworzenia). Obliczanie entalpii w procesach chemicznych ( substancje odniesienia, zastosowanie entalpii tworzenia, wartość opałowa i entalpia spalania ,entalpia dewaluacji). III Zasada termodynamiki (równania Gibbsa –Helmholza,teoremat Nernsta,postulat Plancka, podstawowe konsekwencje III ZT. Egzergia a nieosiągalność zera bezwzględnego. Podstawy termodynamiki procesów nierównowagowych ( zjawiska sprzężone, równania bilansowe, równania fenomenologiczne, stany stacjonarne, dyfuzja izotermiczna w układach ciągłych, lokalne sformułowanie II Zasady Termodynamiki, IV Zasady Termodynamiki, procesy nierównowagowe ustalone, termodynamika zjawisk termoelektrycznych : zjawiska Peltiera i Thomsona, generatory i ziębiarki termoelektryczne).
T-A-1Obliczenia z zakresu termodynamiki chemicznej , obliczanie maksymalnej sprawności egzergetycznej generatora termoelektrycznego oraz ziębiarki.
Metody nauczaniaM-1Wykład informacyjny, prezentacja multimedialna.
Sposób ocenyS-1Ocena podsumowująca: Pisemne zaliczanie wykładu.
Kryteria ocenyOcenaKryterium oceny
2,0mniej niż 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,0powyżej 60% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
3,560 - 70% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,075 - 80% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
4,580 – 90% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia
5,090-100% maksymalnej liczby punktów możliwych do uzyskania w czasie zaliczenia