Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)
Sylabus przedmiotu Computational fluid dynamics:
Informacje podstawowe
Kierunek studiów | Wymiana międzynarodowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | |||
Obszary studiów | — | ||
Profil | |||
Moduł | — | ||
Przedmiot | Computational fluid dynamics | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska | ||
Nauczyciel odpowiedzialny | Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl> | ||
Inni nauczyciele | Anna Story <Anna.Story@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Chemical engineering fundamentals |
W-2 | Fluid Dynamics |
W-3 | Applied Mathematics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Specific objectives may be summarized as: • To understand mathematical characteristics of partial differential equations. • To understand basic properties of computational methods – accuracy, stability, consistency • To learn computational solution techniques for time integration of ordinary differential equations • To learn computational solution techniques for various types of partial differential equations • To learn how to computationally solve Euler and Navier-Stokes equations by using commercial software ANSYS FLUENT, Open Foam, MATLAB |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Introduction to Computational Fluid Dynamics in ANSYS Workbench. Graphical User Interface | 1 |
T-L-2 | Creating the geometry in ANSYS DesignModeler | 5 |
T-L-3 | Generation of mesh in ANSYS Mesher | 4 |
T-L-4 | Introduction to CFD simulations in ANSYS Fluent. Definition of materials of the object and boundary conditions for fluid flow | 2 |
T-L-5 | Postprocessing in ANSYS Fluent | 2 |
T-L-6 | Analysis of a laminar flow in ANSYS Fluent | 2 |
T-L-7 | Applying turbulence model in ANSYS Fluent | 2 |
T-L-8 | Analysis of a heat transfer in ANSYS Fluent | 2 |
T-L-9 | Simulation of multiphase flow in ANSYS Fluent | 2 |
T-L-10 | Modeling of rotating elements in fluent (e.g. rotating wall, multiple reference frame, sliding mesh) | 2 |
T-L-11 | Modeling of a selected issue including creating the geometry, generating the mesh, performing the simulations and postprocessing | 6 |
30 | ||
wykłady | ||
T-W-1 | Illustration of the CFD approach; CFD as an engineering analysis tool | 2 |
T-W-2 | Introduction to numerical methods for Euler and Navier-Stokes equations with emphasis on error analysis, consistency, accuracy and stability | 6 |
T-W-3 | Finite difference methods, finite volume and spectral element methods. Explicit vs. implicit time stepping methods | 4 |
T-W-4 | Methodology of solving CFD problems | 2 |
T-W-5 | Coupling of velocity and pressure fields | 2 |
T-W-6 | Computation of turbulent flows | 4 |
T-W-7 | Multiphase flows and their modelling | 4 |
T-W-8 | Structured and unstructured grids | 1 |
T-W-9 | Structured grid generation methods. | 2 |
T-W-10 | Unstructured grid generation methods. | 2 |
T-W-11 | Benchmarking and calibration. | 1 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Class participation | 30 |
A-L-2 | One-on-One Teaching Consultations | 30 |
60 | ||
wykłady | ||
A-W-1 | Class participation | 30 |
A-W-2 | One-on-One Teaching Consultations | 30 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | activating methods: lecture and didactic discussion |
M-2 | practical methods - numerical/simulation study |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: assessment of progress of the work - monthly |
S-2 | Ocena podsumowująca: written final report |
S-3 | Ocena podsumowująca: written final test/report |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WTiICh_2-_null_W01 Student understands mathematical characteristics of partial differential equations. Student understands basic properties of computational methods – accuracy, stability, consistency Student learns computational solution techniques for time integration of ordinary differential equations Student learns computational solution techniques for various types of partial differential equations | — | — | C-1 | T-W-10, T-W-11, T-W-4, T-W-2, T-W-9, T-W-1, T-L-1, T-W-3, T-W-5, T-W-6, T-W-7, T-W-8 | M-1 | S-3, S-1 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WTiICh_2-_null_U01 Student posseses an abillity to computationally solve Euler and Navier-Stokes equations by using commercial software ANSYS FLUENT, Open Foam, MATLAB Student posseses an abillity to analize, solve problem by using commercial software | — | — | C-1 | T-L-7, T-L-9, T-L-8, T-L-6, T-L-3, T-L-4, T-L-5, T-L-1, T-L-10, T-L-11, T-L-2 | M-2 | S-3, S-1 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WTiICh_2-_null_K01 Student has ability independently or in group to use of specialized software, solving and analyzing processes of mass transfer, momentum and energy | — | — | C-1 | T-L-8, T-W-6, T-L-9, T-W-1, T-L-3, T-W-10, T-L-4, T-L-7, T-W-11, T-L-6, T-W-9, T-W-7, T-L-11, T-L-2, T-W-2, T-L-5, T-W-5, T-L-10, T-W-4, T-W-8, T-L-1, T-W-3 | M-2, M-1 | S-3, S-1 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
WM-WTiICh_2-_null_W01 Student understands mathematical characteristics of partial differential equations. Student understands basic properties of computational methods – accuracy, stability, consistency Student learns computational solution techniques for time integration of ordinary differential equations Student learns computational solution techniques for various types of partial differential equations | 2,0 | |
3,0 | Student is able to formulate a simple transport task of momentum, heat and mass, design and carry out numerical simulations of the selected system geometry in a reproductive way. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
WM-WTiICh_2-_null_U01 Student posseses an abillity to computationally solve Euler and Navier-Stokes equations by using commercial software ANSYS FLUENT, Open Foam, MATLAB Student posseses an abillity to analize, solve problem by using commercial software | 2,0 | |
3,0 | Student is able to formulate a simple transport task of momentum, heat and mass, design and carry out numerical simulations of the selected system geometry in a reproductive way. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
WM-WTiICh_2-_null_K01 Student has ability independently or in group to use of specialized software, solving and analyzing processes of mass transfer, momentum and energy | 2,0 | |
3,0 | Student is able to formulate a simple transport task of momentum, heat and mass, design and carry out numerical simulations of the selected system geometry in a reproductive way. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Hirsch, C, Numerical Computation of Internal and External Flows, Butterworth Heinemann, 2007
- Pletcher, R. H., Tannehill, J. C., Anderson, D., Computational Fluid Mechanics and Heat Transfer, CRC Press, 2011
- Moin, P., Fundamentals of Engineering Numerical Analysis, Cambridge University Press, 2010
Literatura dodatkowa
- Ferziger, J. H., Numerical Methods for Engineering Application, Wiley, 1998
- Ferziger, J. H., Peric, M., Computational Methods for Fluid Dynamics, Springer, 2002