Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu CHEMICAL REACTION ENGINEERING:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot CHEMICAL REACTION ENGINEERING
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Bogdan Ambrożek <Bogdan.Ambrozek@zut.edu.pl>
Inni nauczyciele Halina Murasiewicz <Halina.Murasiewicz@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 30 2,00,60zaliczenie
ćwiczenia audytoryjneA2 30 2,00,40zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Fundamentals of chemical engineering

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Apply the mass balance equation to the most common types of industrial reactors. 4.Write the rate law in terms of concentrations, and temperature. 5.Use nonlinear regression to determine the rate law parameters. 6.Apply the differential and integral methods for analysis of reactor data. 7.Define a catalyst and describe its properties. 8.Describe the steps in a catalytic reaction. 9.Suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Derivation of general mass balance equations. Reactor sizing. Stoichiometry. Conversion. The Rate Law. Analysis of rate data. Multiple reactions. Reaction mechanisms. Analysis of catalytic reactors . Three-phase reactors. Isothermal and nonisothermal reactor design. Analysis of biochemical reactors.30
30
wykłady
T-W-1Introduction. Fundamental concepts. The General Mass Balance Equation. Reactor sizing. Stoichiometry. Conversion. The Reaction Order. The Rate Law. Collection and analysis of rate data. Multiple reactions. Reaction mechanisms. Catalytic reactors. Three-phase reactors. Isothermal and nonisothermal reactor design. Biochemical reactors.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Class participation30
A-A-2Solving computational problems30
60
wykłady
A-W-1Class participation30
A-W-2Tutorial10
A-W-3Individual work20
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1metoda podająca: wykład
M-2metoda praktyczna: ćwiczenia przedmiotowe

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: ocena okresowych osiągnięć studenta
S-2Ocena podsumowująca: ocena pod koniec przedmiotu

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_2-_null_W01
The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Write the rate law in terms of concentrations, and temperature. 4.Define a catalyst and describe its properties. 5.Describe the steps in a catalytic reaction.

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_2-_null_U01
The student will be able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_2-_null_K01
The student will be able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.

Literatura podstawowa

  1. Fogler H.S., Elements of chemical reaction engineering, Prentice-Hall, New Jersey, 2009
  2. Levenspiel O., Chemical reaction engineering, Wiley, New York, 1999
  3. Luyben W.L., Chemical reactor design and control, Wiley, New York, 2007

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Derivation of general mass balance equations. Reactor sizing. Stoichiometry. Conversion. The Rate Law. Analysis of rate data. Multiple reactions. Reaction mechanisms. Analysis of catalytic reactors . Three-phase reactors. Isothermal and nonisothermal reactor design. Analysis of biochemical reactors.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Introduction. Fundamental concepts. The General Mass Balance Equation. Reactor sizing. Stoichiometry. Conversion. The Reaction Order. The Rate Law. Collection and analysis of rate data. Multiple reactions. Reaction mechanisms. Catalytic reactors. Three-phase reactors. Isothermal and nonisothermal reactor design. Biochemical reactors.30
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Class participation30
A-A-2Solving computational problems30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Class participation30
A-W-2Tutorial10
A-W-3Individual work20
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaWM-WTiICh_2-_null_W01The student will be able to: 1.Describe and define the rate of reaction. 2.Derive the mass balance equation. 3.Write the rate law in terms of concentrations, and temperature. 4.Define a catalyst and describe its properties. 5.Describe the steps in a catalytic reaction.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaWM-WTiICh_2-_null_U01The student will be able to: 1.Apply the mass balance equation to the most common types of industrial reactors. 2.Use nonlinear regression to determine the rate law parameters. 3.Apply the differential and integral methods for analysis of reactor data.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaWM-WTiICh_2-_null_K01The student will be able to suggest a mechanism and apply the concept of a rate-limiting step to derive a rate law.