Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechatronika (S1)

Sylabus przedmiotu Techniki symulacji w budowie maszyn:

Informacje podstawowe

Kierunek studiów Mechatronika
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Techniki symulacji w budowie maszyn
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Marcin Hoffmann <Marcin.Hoffmann@zut.edu.pl>
Inni nauczyciele Andrzej Bodnar <Andrzej.Bodnar@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 8 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL4 15 2,50,38zaliczenie
wykładyW4 30 2,50,62zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Zaliczone kursy z matematyki i mechaniki, elektrotechniki i podstaw automatyki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazaniie wiedzy na temat modelowania i prowadzenia symulacji komputerowych wybranych zjawisk, obielktów i systemów.
C-2Nabycie przez studentów umiejętności prowadzenia symulacji w systemie Matlab-Simulink, w szczególności układów elektro-mechanicznych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wybrane przykłady i sposoby symulacji układów mechanicznych z tarciem. Symulacja dynamiki liniowych i nieliniowych układów mechanicznych w środowisku MATLAB-Simulink. Symulacja wybranych układów automatyki. Symulacje wybranych procesów produkcyjnych w środowisku Em-Plant.15
15
wykłady
T-W-1Wprowadzenie do zagadnień symulacji układów mechanicznych, procesów roboczych i układów sterowania. Prognozowanie. Etapy procesu symulacji. Baza sprzętowa i oprogramowanie do symulacji komputerowej zachowań obiektów i procesów, systemy symulacji komputerowej: MATLAB-Simulink, DSpace, AMEsim, Em-Plant. Zastosowanie metod symulacji do prototypowania układów sterowania: budowa modeli symulacyjnych, zastosowanie środowiska MATLAB-Simulink i DSpace. Środowisko szybkiego prototypowania LabView.10
T-W-2Podstawy budowy modeli symulacyjnych: dynamiki ruchu mechanizmów i przestrzennych struktur mechanicznych, procesów roboczych, układów automatyki. Symulacja układów napędowych. Symulacja układów nieliniowych. Modele tarcia. Zastosowanie metod symulacji do projektowania zrobotyzowanych systemów wytwarzania.20
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach15
A-L-2Studiowanie literatury.10
A-L-3Samodzielne rozwiązywanie zadań w programach symulacyjnych.20
A-L-4Opracowanie sprawozdań.12
A-L-5Zaliczenia i konsultacje.5
62
wykłady
A-W-1Uczestnictwo w zajęciach30
A-W-2Studiowanie literatury.8
A-W-3Samodzielna budowa modeli i prowadzenie symulacji komputerowych.15
A-W-4Przygotowanie do kolokwium i zaliczeń.8
A-W-5Konsultacje.2
63

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład ilustrowany licznymi przykładami. Ćwiczenia laboratoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Zaliczenia poszczególnych tematów ćwiczeń laboratoryjnych - samych raportów, nabytej wiedzy i umiejętności. Ocena końcowa jest średnią arytmetyczną.
S-2Ocena podsumowująca: Zaliczenie obejmujące materiał przekazany na wykładach.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_C13-2_W01
Student uczy się modelowania i zasad prowadzenia symulacji komputerowych wybranych zjawisk, obiektów i systemów mechatronicznych.
ME_1A_W07C-1T-W-2, T-W-1, T-L-1M-1S-2, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ME_1A_C13-2_U01
Student nabywa umiejętności budowy modeli i prowadzenia symulacji w systemie Matlab-Simulink, w szczególności układów elektro-mechanicznych.
ME_1A_U06, ME_1A_U09C-2T-W-2, T-L-1M-1S-2, S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ME_1A_C13-2_W01
Student uczy się modelowania i zasad prowadzenia symulacji komputerowych wybranych zjawisk, obiektów i systemów mechatronicznych.
2,0Student nie zna zasad i nie rozumie sposobów budowy modeli symulacyjnych lub zasdy symulacji stosuje niepoprawnie.
3,0Student zna zasady budowy modeli symulacyjnych. Popełniane błędy mają charakter bardziej techniczny niż merytoryczny.
3,5Student opanował wiedzę z zakresu przedmiotu w stopniu pośrednim między wymaganiami na ocenę 3 i 4.
4,0Student zna wiele zasad budowy modeli symulacyjnych i najczęściej rozumie sposób ich tworzenia.
4,5Student opanował wiedzę z zakresu przedmiotu w stopniu pośrednim między wymaganiami na ocenę 4 i 5.
5,0Student zna zasady budowy modeli symulacyjnych urządzeń i procesów i rozumie sposób ich budowy.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ME_1A_C13-2_U01
Student nabywa umiejętności budowy modeli i prowadzenia symulacji w systemie Matlab-Simulink, w szczególności układów elektro-mechanicznych.
2,0Student nie potrafi budować modeli symulacyjnych lub większość buduje niepoprawnie.
3,0Student potrafi budować modele symulacyjne ale występują w nich błędy - są one jednak bardziej charakterze technicznym niż merytorycznym.
3,5Umiejętności studenta są pomiędzy wymaganiami na ocenę 3 i 4.
4,0Student potrafi budować modele urządzeń i procesów, ale w niektórych modelach występują drobne błędy.
4,5Umiejętności studenta są pomiędzy wymaganiami na ocenę 4 i 5.
5,0Student potrafi bezbłędnie budować modele urządzeń i procesów.

Literatura podstawowa

  1. Marchelek K., Dynamika obrabiarek, WNT, Warszawa, 1991
  2. Tarnowski W., Symulacja i optymalizacja w Matlabie, Wydaw. Fundacji WSM w Gdyni, Gdynia, 2001

Literatura dodatkowa

  1. Zalewski A., Cegieła R., MATLAB - obliczenia numeryczne i ich zastosowania, NAKOM, Poznań, 1996

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wybrane przykłady i sposoby symulacji układów mechanicznych z tarciem. Symulacja dynamiki liniowych i nieliniowych układów mechanicznych w środowisku MATLAB-Simulink. Symulacja wybranych układów automatyki. Symulacje wybranych procesów produkcyjnych w środowisku Em-Plant.15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do zagadnień symulacji układów mechanicznych, procesów roboczych i układów sterowania. Prognozowanie. Etapy procesu symulacji. Baza sprzętowa i oprogramowanie do symulacji komputerowej zachowań obiektów i procesów, systemy symulacji komputerowej: MATLAB-Simulink, DSpace, AMEsim, Em-Plant. Zastosowanie metod symulacji do prototypowania układów sterowania: budowa modeli symulacyjnych, zastosowanie środowiska MATLAB-Simulink i DSpace. Środowisko szybkiego prototypowania LabView.10
T-W-2Podstawy budowy modeli symulacyjnych: dynamiki ruchu mechanizmów i przestrzennych struktur mechanicznych, procesów roboczych, układów automatyki. Symulacja układów napędowych. Symulacja układów nieliniowych. Modele tarcia. Zastosowanie metod symulacji do projektowania zrobotyzowanych systemów wytwarzania.20
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach15
A-L-2Studiowanie literatury.10
A-L-3Samodzielne rozwiązywanie zadań w programach symulacyjnych.20
A-L-4Opracowanie sprawozdań.12
A-L-5Zaliczenia i konsultacje.5
62
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach30
A-W-2Studiowanie literatury.8
A-W-3Samodzielna budowa modeli i prowadzenie symulacji komputerowych.15
A-W-4Przygotowanie do kolokwium i zaliczeń.8
A-W-5Konsultacje.2
63
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaME_1A_C13-2_W01Student uczy się modelowania i zasad prowadzenia symulacji komputerowych wybranych zjawisk, obiektów i systemów mechatronicznych.
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_W07Dysponuje wiedzą umożliwiającą dobór metod, technik, materiałów i narzędzi niezbędnych do rozwiązywania prostych problemów i zadań inżynierskich w zakresie projektowania układów mechatronicznych, technik programowania, doboru sterowania, układów pomiarowych i szybkiego prototypowania oraz technologii wytwarzania urządzeń mechatronicznych.
Cel przedmiotuC-1Przekazaniie wiedzy na temat modelowania i prowadzenia symulacji komputerowych wybranych zjawisk, obielktów i systemów.
Treści programoweT-W-2Podstawy budowy modeli symulacyjnych: dynamiki ruchu mechanizmów i przestrzennych struktur mechanicznych, procesów roboczych, układów automatyki. Symulacja układów napędowych. Symulacja układów nieliniowych. Modele tarcia. Zastosowanie metod symulacji do projektowania zrobotyzowanych systemów wytwarzania.
T-W-1Wprowadzenie do zagadnień symulacji układów mechanicznych, procesów roboczych i układów sterowania. Prognozowanie. Etapy procesu symulacji. Baza sprzętowa i oprogramowanie do symulacji komputerowej zachowań obiektów i procesów, systemy symulacji komputerowej: MATLAB-Simulink, DSpace, AMEsim, Em-Plant. Zastosowanie metod symulacji do prototypowania układów sterowania: budowa modeli symulacyjnych, zastosowanie środowiska MATLAB-Simulink i DSpace. Środowisko szybkiego prototypowania LabView.
T-L-1Wybrane przykłady i sposoby symulacji układów mechanicznych z tarciem. Symulacja dynamiki liniowych i nieliniowych układów mechanicznych w środowisku MATLAB-Simulink. Symulacja wybranych układów automatyki. Symulacje wybranych procesów produkcyjnych w środowisku Em-Plant.
Metody nauczaniaM-1Wykład ilustrowany licznymi przykładami. Ćwiczenia laboratoryjne.
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie obejmujące materiał przekazany na wykładach.
S-1Ocena formująca: Zaliczenia poszczególnych tematów ćwiczeń laboratoryjnych - samych raportów, nabytej wiedzy i umiejętności. Ocena końcowa jest średnią arytmetyczną.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna zasad i nie rozumie sposobów budowy modeli symulacyjnych lub zasdy symulacji stosuje niepoprawnie.
3,0Student zna zasady budowy modeli symulacyjnych. Popełniane błędy mają charakter bardziej techniczny niż merytoryczny.
3,5Student opanował wiedzę z zakresu przedmiotu w stopniu pośrednim między wymaganiami na ocenę 3 i 4.
4,0Student zna wiele zasad budowy modeli symulacyjnych i najczęściej rozumie sposób ich tworzenia.
4,5Student opanował wiedzę z zakresu przedmiotu w stopniu pośrednim między wymaganiami na ocenę 4 i 5.
5,0Student zna zasady budowy modeli symulacyjnych urządzeń i procesów i rozumie sposób ich budowy.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaME_1A_C13-2_U01Student nabywa umiejętności budowy modeli i prowadzenia symulacji w systemie Matlab-Simulink, w szczególności układów elektro-mechanicznych.
Odniesienie do efektów kształcenia dla kierunku studiówME_1A_U06Potrafi posługiwać się oprogramowaniem wspomagającym procesy projektowania, symulacji i badań układów mechanicznych, elektrycznych i mechatronicznych.
ME_1A_U09Potrafi rozwiązywać zadania inżynierskie metodami analitycznymi, symulacyjnymi i za pomocą eksperymentu.
Cel przedmiotuC-2Nabycie przez studentów umiejętności prowadzenia symulacji w systemie Matlab-Simulink, w szczególności układów elektro-mechanicznych.
Treści programoweT-W-2Podstawy budowy modeli symulacyjnych: dynamiki ruchu mechanizmów i przestrzennych struktur mechanicznych, procesów roboczych, układów automatyki. Symulacja układów napędowych. Symulacja układów nieliniowych. Modele tarcia. Zastosowanie metod symulacji do projektowania zrobotyzowanych systemów wytwarzania.
T-L-1Wybrane przykłady i sposoby symulacji układów mechanicznych z tarciem. Symulacja dynamiki liniowych i nieliniowych układów mechanicznych w środowisku MATLAB-Simulink. Symulacja wybranych układów automatyki. Symulacje wybranych procesów produkcyjnych w środowisku Em-Plant.
Metody nauczaniaM-1Wykład ilustrowany licznymi przykładami. Ćwiczenia laboratoryjne.
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie obejmujące materiał przekazany na wykładach.
S-1Ocena formująca: Zaliczenia poszczególnych tematów ćwiczeń laboratoryjnych - samych raportów, nabytej wiedzy i umiejętności. Ocena końcowa jest średnią arytmetyczną.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi budować modeli symulacyjnych lub większość buduje niepoprawnie.
3,0Student potrafi budować modele symulacyjne ale występują w nich błędy - są one jednak bardziej charakterze technicznym niż merytorycznym.
3,5Umiejętności studenta są pomiędzy wymaganiami na ocenę 3 i 4.
4,0Student potrafi budować modele urządzeń i procesów, ale w niektórych modelach występują drobne błędy.
4,5Umiejętności studenta są pomiędzy wymaganiami na ocenę 4 i 5.
5,0Student potrafi bezbłędnie budować modele urządzeń i procesów.