Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty uczenia się | O11_2A_D4-02_U01 | potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych, z wykorzystaniem poznanych metod i modeli matematycznych, dokonać oceny, wykorzystywać i integrować wiedzę pochodzącą z różnych źródeł, dokonać analizy funkcjonowania istniejących rozwiązań technicznych obiektów oceanotechnicznych oraz ich elementów, ocenić przydatność i możliwość wykorzystania odpowiednich metod, narzędzi i programów komputerowych do rozwiązania zadanego problemu inżynierskiego, określić parametry eksploatacyjne jednostek pływających oraz oceny zachowania się obiektów pływających w określonych warunkach zewnętrznych, jak i wpływu otoczenia na obiekty oceanotechniczne |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | O11_2A_U09 | potrafi wykorzystać poznane metody i modele matematyczne, uwzględniając ewentualne ich modyfikacje, do modelowania i projektowania elementów, układów, systemów, procesów, maszyn czy obiektów oceanotechnicznych przy pomocy odpowiednich narzędzi |
---|
O11_2A_U10 | potrafi – przy formułowaniu i rozwiązywaniu zadań inżynierskich i prostych problemów badawczych – dokonać oceny i zastosować odpowiednie metody analityczne, symulacyjne i eksperymentalne z zastosowaniem podejścia systemowego, jak również formułować i testować hipotezy związane m.in. z modelowaniem i projektowaniem elementów, układów, systemów, procesów, maszyn czy obiektów oceanotechnicznych |
O11_2A_U11 | potrafi – przy formułowaniu i rozwiązywaniu zadań inżynierskich i prostych problemów badawczych – wykorzystywać i integrować wiedzę pochodzącą z różnych źródeł, zarówno z zakresu oceanotechniki, jak i innych dziedzin nauki i techniki, uwzględniając aspekty pozatechniczne (np. prawne czy ekonomiczne) |
O11_2A_U13 | potrafi dokonać analizy budowy i funkcjonowania istniejących rozwiązań technicznych obiektów oceanotechnicznych oraz ich elementów, jak również zaproponować możliwości ich ulepszenia lub modyfikacji |
O11_2A_U14 | potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć nauki i techniki do rozwiązania zadanego problemu inżynierskiego związanego z zagadnieniami oceanotechniki z uwzględnieniem podejścia systemowego |
O11_2A_U15 | potrafi ocenić przydatność i możliwość wykorzystania odpowiednich metod, narzędzi i programów komputerowych służących do rozwiązania zadanego problemu inżynierskiego związanego z zagadnieniami oceanotechniki dostrzegając ich ograniczenia |
O11_2A_U17 | potrafi określić parametry eksploatacyjne jednostek pływających oraz dokonać oceny zachowania się obiektów pływających w określonych warunkach zewnętrznych, jak i wpływu otoczenia na obiekty oceanotechniczne |
O11_2A_U19 | potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych |
O11_2A_U23 | potrafi ocenić wpływ właściwej eksploatacji systemów i obiektów technicznych na ich niezawodność i wydłużenie cyklu życia oraz bezpieczeństwo użytkowania |
Cel przedmiotu | C-1 | Zapoznanie studentów z podstawami teoretycznymi i metodami analizy wytrzymałości statycznej i zmęczeniowej kadłuba okrętowego oraz obiektów offshore oraz stateczności elementów konstrukcyjnych kadłuba oraz obiektów offshore |
---|
Treści programowe | T-W-2 | Wave loads acting on offshore structures. |
---|
T-W-8 | Reliability analysis (ZUT): types of distributions of random variables, structural reliability, reliability-based design procedures, uncertainties, methods for reliability analysis. |
T-W-3 | Analysis of structural strength and buckling of pipelines, risers, drillstrings. Stability of plates and stiffened plates, modes of failure. |
T-W-5 | Application of FEM in analysis of ship and offshore structures: element types, meshing, boundary conditions, guidelines for modelling ship and offshore structures, rule requirements. Submodelling. Stress concentrations. Structural modelling of offshore installations: jacket structures, FPSO’s, TLP, spar and semi-submersibles. Overall and local buckling of tubular members. Ultimate strength of cylindrical shells. |
T-W-6 | Mechanics of composites. |
T-W-7 | Vibrations of Ships and Offshore Structures: Vibrations of beams and plates, influence of rotary inertia and shear forces. FE formulation of vibration problem – mass and damping matrices. Methods of solution of eigenproblems and forced vibrations. Time discretization, explicit and implicit method. Ship hull and local vibrations. Vibrations in offshore installations, analysis of offshore structure subjects to earthquakes loading. Vibration of pipelines, risers, drillstrings. |
T-W-1 | Strength ship and offshore structures: Analysis of overall strength: stresses due to bending, shear and torsion of ship hulls using theory of thin-walled beams. |
T-W-4 | Fatigue of ship structural details: main factors contributing to fatigue, Long-term distribution of loads and stresses, Spectral fatigue analysis, Simplified fatigue analysis, Fatigue capacity of welded structures based on S-N curves and fracture mechanics. Design S-N curves. |
Metody nauczania | M-3 | Metody praktyczne: pokaz, ćwiczenia przedmiotowe. |
---|
M-4 | Metody programowane: z użyciem komputera. |
Sposób oceny | S-2 | Ocena formująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia laboratoryjne). |
---|
S-3 | Ocena formująca: Ocena ciągła. |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych. |
3,0 | Student potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych przy uwzględnieniu obowiązujących przepisów oraz wymagań, na podstawowym poziomie trudności. |
3,5 | Student potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych przy uwzględnieniu obowiązujących przepisów oraz wymagań, na średnim poziomie trudności. Ponadto potrafi dokonać analizy funkcjonowania istniejących rozwiązań technicznych oraz ocenić przydatność i możliwość wykorzystania odpowiednich metod komputerowych do rozwiązania zadanego problemu inżynierskiego w stopniu podstawowym. |
4,0 | Student potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych przy uwzględnieniu obowiązujących przepisów oraz wymagań, na średniozaawansowanym poziomie trudności. Ponadto potrafi dokonać analizy funkcjonowania istniejących rozwiązań technicznych oraz ocenić przydatność i możliwość wykorzystania odpowiednich metod komputerowych do rozwiązania zadanego problemu inżynierskiego w stopniu średnim. |
4,5 | Student potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych przy uwzględnieniu obowiązujących przepisów oraz wymagań, jak również zasad dobrej praktyki inżynierskiej, na średniozaawansowanym poziomie trudności. Ponadto potrafi dokonać analizy funkcjonowania istniejących rozwiązań technicznych oraz ocenić przydatność i możliwość wykorzystania odpowiednich metod komputerowych do rozwiązania zadanego problemu inżynierskiego w stopniu dobrym. |
5,0 | Student potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych przy uwzględnieniu obowiązujących przepisów oraz wymagań, jak również zasad dobrej praktyki inżynierskiej, na zaawansowanym poziomie trudności. Ponadto potrafi dokonać analizy funkcjonowania istniejących rozwiązań technicznych oraz ocenić przydatność i możliwość wykorzystania odpowiednich metod komputerowych do rozwiązania zadanego problemu inżynierskiego w stopniu zaawansowanym. |