Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Inżynierii Środowiska - Civil Engineering (S2)
specjalność: Engineering Structures

Sylabus przedmiotu Structural Reliability Theory:

Informacje podstawowe

Kierunek studiów Civil Engineering
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Structural Reliability Theory
Specjalność Engineering Structures
Jednostka prowadząca Katedra Teorii Konstrukcji
Nauczyciel odpowiedzialny Radosław Iwankiewicz <riwankiewicz@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 30 1,00,50zaliczenie
projektyP2 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics courses pertinent to BSc in Engineering degree course.
W-2Structural Mechanics.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Capability to use the methods of probability theory, in particular the methods of random variables in problems of structural reliability.
C-2Capability to formulate and solve the reliability problem for linear failure (safety margin, or limit state) function and normal basic variables.
C-3Capability to formulate and solve the reliability problem for non-linear failure (safety margin, or limit state) function and normal basic variables.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Example problems: determination of probability of failure and survival (reliability) of single structural elements and their combinations (in series, in parallel, etc.)3
T-P-2Example problems: determination of probability distribution function, cumulative distribution function and statistical moments of some discrete random variables.4
T-P-3Example problems: determination of probability density, cumulative distribution function and statistical moments of some continuous random variables.4
T-P-4Example problems: determination of approximate reliability index for non-linear safety margin functions with the aid of Cornell method.2
T-P-5Example problems: iterative determination of reliability index for non-linear safety margin functions with the aid of Hasofer-Lind method.2
15
wykłady
T-W-1Uncertainties in Structural Engineering. Events of failure and survival.2
T-W-2Probability theory (revision). Sample space and events. Axioms and theorems of probability theory. Probability of failure and survival (reliability) of single structural elements and their combinations.4
T-W-3Random variables: discrete and continuous probability distribution, cumulative distribution and density function, statistical moments. Transformation of random variables. Example probability distributions, e.g. Gaussian (normal), lognormal, extreme value distributions type I (Gumbel), type II (Frechet), type III (Weibull).8
T-W-4Safety margin and reliability index for linear failure (safety margin, or limit state) function and normal basic variables.4
T-W-5Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the mean point (about the expected values) - Cornell method. Approximate reliability index .4
T-W-6Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the design point – Hasofer-Lind method.4
T-W-7Poisson counting process and reliability vs. time: probability distribution of time to failure, expected life-time, expected failure (breakdown rate), expected time between breakdowns .4
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Attending the example classes.15
A-P-2Private (home) study.5
A-P-3Home assignments (two major assignments).5
A-P-4Studying/revision for the final test.5
30
wykłady
A-W-1Attending the lectures.30
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lectures.
M-2Solving problems and home assignments.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Final test mark.
S-2Ocena formująca: Assessment of home assignments.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_ES/D/08_W01
Student should be able to develop simple mathematical models for analysis of structural reliability.
B-A_2A_W01C-1, C-2, C-3T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-P-2, T-P-3, T-P-1, T-P-4, T-P-5M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_ES/D/08_U01
Student should be able to solve numerically the equations occurring in structural reliability problems.
B-A_2A_U01C-1, C-2, C-3T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-P-2, T-P-3, T-P-1, T-P-4, T-P-5M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_ES/D/08_K01
Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
B-A_2A_K01C-1, C-2, C-3T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-P-2, T-P-3, T-P-1, T-P-4, T-P-5M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_ES/D/08_W01
Student should be able to develop simple mathematical models for analysis of structural reliability.
2,0
3,0Student has a good knowledge of mathematical tools necessary in analysis structural reliability.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_ES/D/08_U01
Student should be able to solve numerically the equations occurring in structural reliability problems.
2,0
3,0Student shows a capability to solve numerically the equations occurring in problems of structural reliability and to interpret the results.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_ES/D/08_K01
Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
2,0
3,0Student is able to devise the working plan (schedule) for an undertaken research/computational project.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Robert E. Melchers, Structural Reliability Analysis and Prediction, John Wiley and Sons, 1999
  2. P. Thoft-Christensen and Y. Murotsu, Application of Structural Systems Reliability Theory, Springer, Berlin, 1986

Literatura dodatkowa

  1. R. Iwankiewicz, R. Rackwitz, Non-stationary and stationary coincidence probabilities for intermittent pulse load processes, Probabilistic Enginering Mechanics, 2000, vol. 15, pp. 155-167

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Example problems: determination of probability of failure and survival (reliability) of single structural elements and their combinations (in series, in parallel, etc.)3
T-P-2Example problems: determination of probability distribution function, cumulative distribution function and statistical moments of some discrete random variables.4
T-P-3Example problems: determination of probability density, cumulative distribution function and statistical moments of some continuous random variables.4
T-P-4Example problems: determination of approximate reliability index for non-linear safety margin functions with the aid of Cornell method.2
T-P-5Example problems: iterative determination of reliability index for non-linear safety margin functions with the aid of Hasofer-Lind method.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Uncertainties in Structural Engineering. Events of failure and survival.2
T-W-2Probability theory (revision). Sample space and events. Axioms and theorems of probability theory. Probability of failure and survival (reliability) of single structural elements and their combinations.4
T-W-3Random variables: discrete and continuous probability distribution, cumulative distribution and density function, statistical moments. Transformation of random variables. Example probability distributions, e.g. Gaussian (normal), lognormal, extreme value distributions type I (Gumbel), type II (Frechet), type III (Weibull).8
T-W-4Safety margin and reliability index for linear failure (safety margin, or limit state) function and normal basic variables.4
T-W-5Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the mean point (about the expected values) - Cornell method. Approximate reliability index .4
T-W-6Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the design point – Hasofer-Lind method.4
T-W-7Poisson counting process and reliability vs. time: probability distribution of time to failure, expected life-time, expected failure (breakdown rate), expected time between breakdowns .4
30

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Attending the example classes.15
A-P-2Private (home) study.5
A-P-3Home assignments (two major assignments).5
A-P-4Studying/revision for the final test.5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Attending the lectures.30
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_ES/D/08_W01Student should be able to develop simple mathematical models for analysis of structural reliability.
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_W01Has advanced and in-depth knowledge within the scope of mathematics and other areas of science useful for formulating and solving complex tasks within the scope of civil engineering
Cel przedmiotuC-1Capability to use the methods of probability theory, in particular the methods of random variables in problems of structural reliability.
C-2Capability to formulate and solve the reliability problem for linear failure (safety margin, or limit state) function and normal basic variables.
C-3Capability to formulate and solve the reliability problem for non-linear failure (safety margin, or limit state) function and normal basic variables.
Treści programoweT-W-1Uncertainties in Structural Engineering. Events of failure and survival.
T-W-2Probability theory (revision). Sample space and events. Axioms and theorems of probability theory. Probability of failure and survival (reliability) of single structural elements and their combinations.
T-W-3Random variables: discrete and continuous probability distribution, cumulative distribution and density function, statistical moments. Transformation of random variables. Example probability distributions, e.g. Gaussian (normal), lognormal, extreme value distributions type I (Gumbel), type II (Frechet), type III (Weibull).
T-W-4Safety margin and reliability index for linear failure (safety margin, or limit state) function and normal basic variables.
T-W-5Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the mean point (about the expected values) - Cornell method. Approximate reliability index .
T-W-6Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the design point – Hasofer-Lind method.
T-W-7Poisson counting process and reliability vs. time: probability distribution of time to failure, expected life-time, expected failure (breakdown rate), expected time between breakdowns .
T-P-2Example problems: determination of probability distribution function, cumulative distribution function and statistical moments of some discrete random variables.
T-P-3Example problems: determination of probability density, cumulative distribution function and statistical moments of some continuous random variables.
T-P-1Example problems: determination of probability of failure and survival (reliability) of single structural elements and their combinations (in series, in parallel, etc.)
T-P-4Example problems: determination of approximate reliability index for non-linear safety margin functions with the aid of Cornell method.
T-P-5Example problems: iterative determination of reliability index for non-linear safety margin functions with the aid of Hasofer-Lind method.
Metody nauczaniaM-1Lectures.
M-2Solving problems and home assignments.
Sposób ocenyS-1Ocena formująca: Final test mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student has a good knowledge of mathematical tools necessary in analysis structural reliability.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_ES/D/08_U01Student should be able to solve numerically the equations occurring in structural reliability problems.
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_U01Is able to obtain information from literature, data bases and other properly selected sources, also in a foreign language; is able to integrate the obtained information, interpret it and evaluate it critically as well as draw conclusions, formulate and sufficiently justify opinions
Cel przedmiotuC-1Capability to use the methods of probability theory, in particular the methods of random variables in problems of structural reliability.
C-2Capability to formulate and solve the reliability problem for linear failure (safety margin, or limit state) function and normal basic variables.
C-3Capability to formulate and solve the reliability problem for non-linear failure (safety margin, or limit state) function and normal basic variables.
Treści programoweT-W-1Uncertainties in Structural Engineering. Events of failure and survival.
T-W-2Probability theory (revision). Sample space and events. Axioms and theorems of probability theory. Probability of failure and survival (reliability) of single structural elements and their combinations.
T-W-3Random variables: discrete and continuous probability distribution, cumulative distribution and density function, statistical moments. Transformation of random variables. Example probability distributions, e.g. Gaussian (normal), lognormal, extreme value distributions type I (Gumbel), type II (Frechet), type III (Weibull).
T-W-4Safety margin and reliability index for linear failure (safety margin, or limit state) function and normal basic variables.
T-W-5Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the mean point (about the expected values) - Cornell method. Approximate reliability index .
T-W-6Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the design point – Hasofer-Lind method.
T-W-7Poisson counting process and reliability vs. time: probability distribution of time to failure, expected life-time, expected failure (breakdown rate), expected time between breakdowns .
T-P-2Example problems: determination of probability distribution function, cumulative distribution function and statistical moments of some discrete random variables.
T-P-3Example problems: determination of probability density, cumulative distribution function and statistical moments of some continuous random variables.
T-P-1Example problems: determination of probability of failure and survival (reliability) of single structural elements and their combinations (in series, in parallel, etc.)
T-P-4Example problems: determination of approximate reliability index for non-linear safety margin functions with the aid of Cornell method.
T-P-5Example problems: iterative determination of reliability index for non-linear safety margin functions with the aid of Hasofer-Lind method.
Metody nauczaniaM-1Lectures.
M-2Solving problems and home assignments.
Sposób ocenyS-1Ocena formująca: Final test mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student shows a capability to solve numerically the equations occurring in problems of structural reliability and to interpret the results.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_ES/D/08_K01Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_K01Is able to professionally define, classify and apply the priorities used for accomplishment of an undertaken engineering task.
Cel przedmiotuC-1Capability to use the methods of probability theory, in particular the methods of random variables in problems of structural reliability.
C-2Capability to formulate and solve the reliability problem for linear failure (safety margin, or limit state) function and normal basic variables.
C-3Capability to formulate and solve the reliability problem for non-linear failure (safety margin, or limit state) function and normal basic variables.
Treści programoweT-W-1Uncertainties in Structural Engineering. Events of failure and survival.
T-W-2Probability theory (revision). Sample space and events. Axioms and theorems of probability theory. Probability of failure and survival (reliability) of single structural elements and their combinations.
T-W-3Random variables: discrete and continuous probability distribution, cumulative distribution and density function, statistical moments. Transformation of random variables. Example probability distributions, e.g. Gaussian (normal), lognormal, extreme value distributions type I (Gumbel), type II (Frechet), type III (Weibull).
T-W-4Safety margin and reliability index for linear failure (safety margin, or limit state) function and normal basic variables.
T-W-5Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the mean point (about the expected values) - Cornell method. Approximate reliability index .
T-W-6Non-linear safety margin (failure or limit state) function and normal basic variables. Linearization (Taylor series expansion) about the design point – Hasofer-Lind method.
T-W-7Poisson counting process and reliability vs. time: probability distribution of time to failure, expected life-time, expected failure (breakdown rate), expected time between breakdowns .
T-P-2Example problems: determination of probability distribution function, cumulative distribution function and statistical moments of some discrete random variables.
T-P-3Example problems: determination of probability density, cumulative distribution function and statistical moments of some continuous random variables.
T-P-1Example problems: determination of probability of failure and survival (reliability) of single structural elements and their combinations (in series, in parallel, etc.)
T-P-4Example problems: determination of approximate reliability index for non-linear safety margin functions with the aid of Cornell method.
T-P-5Example problems: iterative determination of reliability index for non-linear safety margin functions with the aid of Hasofer-Lind method.
Metody nauczaniaM-1Lectures.
M-2Solving problems and home assignments.
Sposób ocenyS-1Ocena formująca: Final test mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to devise the working plan (schedule) for an undertaken research/computational project.
3,5
4,0
4,5
5,0