Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Inżynierii Środowiska - Civil Engineering (S2)
specjalność: Engineering Structures

Sylabus przedmiotu Structural Dynamics:

Informacje podstawowe

Kierunek studiów Civil Engineering
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Structural Dynamics
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Teorii Konstrukcji
Nauczyciel odpowiedzialny Radosław Iwankiewicz <riwankiewicz@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 30 1,50,50egzamin
projektyP2 15 1,50,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics courses pertinent to BSc in Engineering degree course
W-2Structural Mechanics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.2
T-P-2Example problems: derivation of equations of motion of MDOF systems.3
T-P-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.5
T-P-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.1
T-P-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.4
15
wykłady
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.3
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.6
T-W-3Lagrange’s equations.2
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.8
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.3
T-W-6Stability of equilibrium positions.3
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).5
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Attending the example classes.15
A-P-2Private (home) study.20
A-P-3Home assignments (two major assignments).10
45
wykłady
A-W-1Attending the lectures.30
A-W-2Private (home) study.10
A-W-3Studying/revision for the final exam.5
45

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lectures.
M-2Solving problems and home assignments.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/C/04_W01
Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems.
B-A_2A_W01C-1, C-2, C-3, C-4T-W-7, T-W-1, T-W-3, T-W-6, T-W-4, T-W-2, T-W-5, T-P-2, T-P-1, T-P-3, T-P-4, T-P-5M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/C/04_U01
Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems.
B-A_2A_U01C-1, C-2, C-3, C-4T-W-7, T-W-1, T-W-3, T-W-6, T-W-4, T-W-2, T-W-5, T-P-2, T-P-1, T-P-3, T-P-4, T-P-5M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/C/04_K01
Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
B-A_2A_K01C-1, C-2, C-3, C-4T-W-7, T-W-1, T-W-3, T-W-6, T-W-4, T-W-2, T-W-5, T-P-2, T-P-1, T-P-3, T-P-4, T-P-5M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_A/C/04_W01
Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems.
2,0
3,0Student has a good knowledge of mathematical tools necessary in analysis of vibrations and elastic stability.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_A/C/04_U01
Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems.
2,0
3,0Student shows a capability to solve numerically the equations occurring in problems of vibrations and elastic stability and to interpret the results.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_A/C/04_K01
Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
2,0
3,0Student is able to devise the working plan (schedule) for an undertaken research/computational project.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. W.C. Hurty and M.F. Rubinstein, Dynamics of Structures, Englewood Cliffs: Prentice Hall, 1964
  2. S.S. Rao, Mechanical Vibrations, Addison-Wesley, 1995, 3rd edition
  3. C.F. Beards, Engineering Vibration Analysis with Application to Control Systems, Edward Arnold, 1995
  4. M. Geradin, D.Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics, J. Wiley, 1994

Literatura dodatkowa

  1. A. Jabłonka, R. Iwankiewicz, Moment equations and cumulant-neglect closure techniques for non-linear dynamic systems under renewal impulse process excitations, Probabilistic Engineering Mechanics, Elsevier, 2020, Vol. 60, pp. 1-11
  2. R. Iwankiewicz, Dynamical mechanical systems under random impulses, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1995, Vol. 36, ISBN 9810222815, (161 pages)

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.2
T-P-2Example problems: derivation of equations of motion of MDOF systems.3
T-P-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.5
T-P-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.1
T-P-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.4
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.3
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.6
T-W-3Lagrange’s equations.2
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.8
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.3
T-W-6Stability of equilibrium positions.3
T-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).5
30

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Attending the example classes.15
A-P-2Private (home) study.20
A-P-3Home assignments (two major assignments).10
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Attending the lectures.30
A-W-2Private (home) study.10
A-W-3Studying/revision for the final exam.5
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_A/C/04_W01Student should be able to develop simple mathematical models for vibration analysis and to formulate the buckling problems.
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_W01Has advanced and in-depth knowledge within the scope of mathematics and other areas of science useful for formulating and solving complex tasks within the scope of civil engineering
Cel przedmiotuC-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.
Treści programoweT-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.
T-W-3Lagrange’s equations.
T-W-6Stability of equilibrium positions.
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.
T-P-2Example problems: derivation of equations of motion of MDOF systems.
T-P-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.
T-P-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.
T-P-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.
T-P-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.
Metody nauczaniaM-1Lectures.
M-2Solving problems and home assignments.
Sposób ocenyS-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student has a good knowledge of mathematical tools necessary in analysis of vibrations and elastic stability.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_A/C/04_U01Student should be able to solve numerically the eigenvalue problems and equations of motion in vibration problems. He/she should also be able to solve the equations governing the buckling problems.
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_U01Is able to obtain information from literature, data bases and other properly selected sources, also in a foreign language; is able to integrate the obtained information, interpret it and evaluate it critically as well as draw conclusions, formulate and sufficiently justify opinions
Cel przedmiotuC-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.
Treści programoweT-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.
T-W-3Lagrange’s equations.
T-W-6Stability of equilibrium positions.
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.
T-P-2Example problems: derivation of equations of motion of MDOF systems.
T-P-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.
T-P-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.
T-P-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.
T-P-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.
Metody nauczaniaM-1Lectures.
M-2Solving problems and home assignments.
Sposób ocenyS-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student shows a capability to solve numerically the equations occurring in problems of vibrations and elastic stability and to interpret the results.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_A/C/04_K01Student shows the capability to make a plan for an undertaken research/computational project, to execute it and to observe deadlines.
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_K01Is able to professionally define, classify and apply the priorities used for accomplishment of an undertaken engineering task.
Cel przedmiotuC-1Capability to write down the equations of motion of single- and multi-degree-of-freedom linear systems with the aid of Newton’second law, the principle of angular momentum and Lagrange’s equations as well as capability to determine the natural frequency of single-degree-of-freedom systems.
C-2Capability to formulate and solve the eigenvalue problem (to determine the natural frequencies and eigenvectors) for multi-degree-of-freedom systems.
C-3Capability to determine the forced vibration response of single- and multi-degree-of-freedom linear systems to harmonic and some non-periodic excitations.
C-4Capability to formulate the buckling problem and to determine the critical load for rods (columns) with different boundary conditions and for simple plane frames.
Treści programoweT-W-7Structural stability: buckling of elastic rods (columns), buckling of plane frames (displacement method approach).
T-W-1Degrees of freedom and generalized co-ordinates. Constraints and their combinations. Equations of motion: Newton’second law and principle of angular momentum. Oscillatory motions and their superposition.
T-W-3Lagrange’s equations.
T-W-6Stability of equilibrium positions.
T-W-4Multi-degree-of-freedom (MDOF) systems: equations of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenvectors), damping hypotheses. Forced vibrations: direct approach and modal transformation technique for harmonic excitation.
T-W-2Single-degree-of-freedom (SDOF) systems: equation of motion, undamped and damped free vibrations. Forced vibrations: harmonic excitation, excitation due to rotating unbalance, base motion excitation, non-periodic excitations.
T-W-5Transverse vibrations of a beam: equation of motion, eigenvalue problem (eigenvalues, natural frequencies, eigenfunctions – normal modes), different boundary conditions.
T-P-2Example problems: derivation of equations of motion of MDOF systems.
T-P-1Example problems: derivation of equations of motion of SDOF systems, determination of natural frequency.
T-P-3Solving eigenvalue problem for MDOF systems, determination of natural frequencies and eigenvectors.
T-P-4Determination of amplitudes of steady-state response of a MDOF system to harmonic excitation.
T-P-5Determination of critical load for rods (columns) with different boundary conditions and for simple plane frames.
Metody nauczaniaM-1Lectures.
M-2Solving problems and home assignments.
Sposób ocenyS-1Ocena podsumowująca: Final exam mark.
S-2Ocena formująca: Assessment of home assignments.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to devise the working plan (schedule) for an undertaken research/computational project.
3,5
4,0
4,5
5,0