Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Zarządzanie i inżynieria produkcji (S2)
specjalność: logistyka przemysłowa

Sylabus przedmiotu Prognozowanie i symulacja procesów produkcyjnych:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Prognozowanie i symulacja procesów produkcyjnych
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Zarządzania Produkcją
Nauczyciel odpowiedzialny Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>
Inni nauczyciele Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>, Piotr Pawlukowicz <Piotr.Pawlukowicz@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 30 1,30,38zaliczenie
wykładyW1 15 0,70,62zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Metody prawdopodobieństwa i statystyka

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Nauczyć studentów analizy złożonych systemów. Określania zmiennych zależnych i niezależnych
C-2Nauczyć studentów projektowania i przeprowadzenia eksperymentów.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Prognozowanie metodą naiwną, średnich, średniej ruchomej, wygładzania wykłądniczego 1, 2 i 3 rzędu. Prognozowanie z wykorzystaniem metod regresyjnych4
T-L-2Opracowanie modelu symulacyjnego przykładowego procesu produkcyjnego z wykorzystaniem sieci Petriego. Weryfikacja i walidacja modelu symulacyjnego10
T-L-3Opracowanie modelu przepływu materiałów w systemie produkcyjnym z wykorzystaniem programu Plan Simulation.10
T-L-4Przeprowadzenie badań symulacyjnych z wykorzystaniem opracowanych modeli symulacyjnych6
30
wykłady
T-W-1Wstęp do prognozowania, prognozowanie metodami jakościowymi i ilosciowymi.3
T-W-2Podstawowe pojęcia teorii modelowania procesów produkcyjnych. Procedura procesu badań symulacyjnych VDI.2
T-W-3Modelowanie procesów produkcyjnych z wykorzystaniem sieci Petri.6
T-W-4Przykłady modelowania procesów produkcyjnych z wykorzystaniem programu Plant Simulation.4
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach30
A-L-2Konsultacje1
A-L-3Przygotowanie sprawozdań2
33
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2Udział w zaliczeniu formy zajęć i konsultacjach1
A-W-3Przygotowanie do zaliczenia2
18

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny i problemowy
M-2ćwiczenia laboratoryjne połaczone z analizą i rozwiązywaniem zadanych problemów.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Sprawozdania z ćwiczeń laboratoryjnych
S-2Ocena podsumowująca: Rozmowa na temat przeprowadzonych ćwiczeń

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_2A_C03_W01
Ma wiedzę z zakresu modelowania skomplikowanych zjawisk i systemów z wykorzystaniem metod prognozowania i symulacyjnych
ZIIP_2A_W02, ZIIP_2A_W04, ZIIP_2A_W12C-1, C-2T-L-1, T-L-2, T-L-3, T-W-4, T-W-3, T-W-2, T-W-1M-1S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_2A_C03_U01
potrafi przeprowadzić analizę złożonego systemu lub zjawiska następnie zaplanować odowiednie badania, wykonac pomiary, przeprowadzic eksprymenty symulacyjne oraz wyciągnąć wnioski.
ZIIP_2A_U08, ZIIP_2A_U16, ZIIP_2A_U21C-1, C-2T-L-1, T-L-2, T-L-3, T-W-4, T-W-3, T-W-2, T-W-1M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_2A_C03_K01
Ma świadomość potrzeby ciągłego dokształcania się w zakresie zastosowań metod statystycznych w procesach wytwarzania. Potrafi efektywnie planować realizacje przyjętych zadań.
ZIIP_2A_K01C-2M-2S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ZIIP_2A_C03_W01
Ma wiedzę z zakresu modelowania skomplikowanych zjawisk i systemów z wykorzystaniem metod prognozowania i symulacyjnych
2,0Student nie potrafi opisać etapów procesu prognozowania i symulowania.
3,0Student potrafi opisać etapy procesu prognozowania i symulowania.
3,5Student potafi Dobrać metodę prognozawania lub symulacyjną do typowego problemu.
4,0Student potraci przanalizować wpływ etapów prodnozowania i symulacji na na jakość wyników.
4,5Student potrafi zaplanować badania prognostyczne i symulacyjna zla złożonych zadań.
5,0Student potrafi przewidzieć dokładność metod prognostycznych i symulacyjnch zla złożonych zadań.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ZIIP_2A_C03_U01
potrafi przeprowadzić analizę złożonego systemu lub zjawiska następnie zaplanować odowiednie badania, wykonac pomiary, przeprowadzic eksprymenty symulacyjne oraz wyciągnąć wnioski.
2,0Student nie potrafi zaplanować badań typowych systemów i nie wie jak przeprowadzić odpowiednie eksperymenty.
3,0Student potrafi zaplanować badania typowych systemów i wie jak przeprowadzić odpowiednie eksperymenty.
3,5Student potrafi wytłumaczyć znaczenie poszczególnych etapów badania prognostycznego i symulacyjnego.
4,0Student potrafi zaplanować badania złożonych systemów i wie jak przeprowadzić odpowiednie eksperymenty.
4,5Student potrafi wyciągnąć wnioski z przeprowadzonych badań korzystając z metod statystycznych.
5,0Student potrafi ocenić dokładność uzyskanych oszacowań.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ZIIP_2A_C03_K01
Ma świadomość potrzeby ciągłego dokształcania się w zakresie zastosowań metod statystycznych w procesach wytwarzania. Potrafi efektywnie planować realizacje przyjętych zadań.
2,0
3,0Potrafi rozpoznac i wyjasnic działanie systemu produkcyjnego.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. red. M. Cieślak, Prognozowanie gospodarcze, PWN, Warszawa, 2005
  2. P. Dittmann, Prognozowanie w przedsiębiorstwie, Wolters Kluwer Polska, Warszawa, 2008
  3. ZDANOWICZ R., Modelowanie i symulacja procesów wytwarzania., Wydawnictwa Politechniki Śląskiej, Opole, 2007, 2

Literatura dodatkowa

  1. Jardzioch A., Sterowanie elastycznymi systemami obróbkowymi z zastosowaniem metod sztucznej inteligencji, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Szczecin, 2009, 1

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Prognozowanie metodą naiwną, średnich, średniej ruchomej, wygładzania wykłądniczego 1, 2 i 3 rzędu. Prognozowanie z wykorzystaniem metod regresyjnych4
T-L-2Opracowanie modelu symulacyjnego przykładowego procesu produkcyjnego z wykorzystaniem sieci Petriego. Weryfikacja i walidacja modelu symulacyjnego10
T-L-3Opracowanie modelu przepływu materiałów w systemie produkcyjnym z wykorzystaniem programu Plan Simulation.10
T-L-4Przeprowadzenie badań symulacyjnych z wykorzystaniem opracowanych modeli symulacyjnych6
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wstęp do prognozowania, prognozowanie metodami jakościowymi i ilosciowymi.3
T-W-2Podstawowe pojęcia teorii modelowania procesów produkcyjnych. Procedura procesu badań symulacyjnych VDI.2
T-W-3Modelowanie procesów produkcyjnych z wykorzystaniem sieci Petri.6
T-W-4Przykłady modelowania procesów produkcyjnych z wykorzystaniem programu Plant Simulation.4
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach30
A-L-2Konsultacje1
A-L-3Przygotowanie sprawozdań2
33
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2Udział w zaliczeniu formy zajęć i konsultacjach1
A-W-3Przygotowanie do zaliczenia2
18
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięZIIP_2A_C03_W01Ma wiedzę z zakresu modelowania skomplikowanych zjawisk i systemów z wykorzystaniem metod prognozowania i symulacyjnych
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_2A_W02ma wiedzę ogólną dotyczącą teorii i metod badawczych z dziedziny nauk technicznych i inżynierii produkcji
ZIIP_2A_W04ma uporządkowaną wiedzę z zakresu planowania, optymalizacji, oceny i prognozowania wyników
ZIIP_2A_W12posiada wiedzę z zakresu symulacji procesów produkcyjnych, cyklu życia urządzeń, obiektów i systemów technicznych
Cel przedmiotuC-1Nauczyć studentów analizy złożonych systemów. Określania zmiennych zależnych i niezależnych
C-2Nauczyć studentów projektowania i przeprowadzenia eksperymentów.
Treści programoweT-L-1Prognozowanie metodą naiwną, średnich, średniej ruchomej, wygładzania wykłądniczego 1, 2 i 3 rzędu. Prognozowanie z wykorzystaniem metod regresyjnych
T-L-2Opracowanie modelu symulacyjnego przykładowego procesu produkcyjnego z wykorzystaniem sieci Petriego. Weryfikacja i walidacja modelu symulacyjnego
T-L-3Opracowanie modelu przepływu materiałów w systemie produkcyjnym z wykorzystaniem programu Plan Simulation.
T-W-4Przykłady modelowania procesów produkcyjnych z wykorzystaniem programu Plant Simulation.
T-W-3Modelowanie procesów produkcyjnych z wykorzystaniem sieci Petri.
T-W-2Podstawowe pojęcia teorii modelowania procesów produkcyjnych. Procedura procesu badań symulacyjnych VDI.
T-W-1Wstęp do prognozowania, prognozowanie metodami jakościowymi i ilosciowymi.
Metody nauczaniaM-1Wykład informacyjny i problemowy
Sposób ocenyS-2Ocena podsumowująca: Rozmowa na temat przeprowadzonych ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi opisać etapów procesu prognozowania i symulowania.
3,0Student potrafi opisać etapy procesu prognozowania i symulowania.
3,5Student potafi Dobrać metodę prognozawania lub symulacyjną do typowego problemu.
4,0Student potraci przanalizować wpływ etapów prodnozowania i symulacji na na jakość wyników.
4,5Student potrafi zaplanować badania prognostyczne i symulacyjna zla złożonych zadań.
5,0Student potrafi przewidzieć dokładność metod prognostycznych i symulacyjnch zla złożonych zadań.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięZIIP_2A_C03_U01potrafi przeprowadzić analizę złożonego systemu lub zjawiska następnie zaplanować odowiednie badania, wykonac pomiary, przeprowadzic eksprymenty symulacyjne oraz wyciągnąć wnioski.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
ZIIP_2A_U16potrafi wykonać analizę i zaproponować ulepszenia istniejących rozwiązań technicznych lub technologicznych
ZIIP_2A_U21potrafi dokonywać doboru metod optymalizacji, symulacji, prognozowania, wywodu wiedzy oraz wspomagania działań technologiami informatycznymi
Cel przedmiotuC-1Nauczyć studentów analizy złożonych systemów. Określania zmiennych zależnych i niezależnych
C-2Nauczyć studentów projektowania i przeprowadzenia eksperymentów.
Treści programoweT-L-1Prognozowanie metodą naiwną, średnich, średniej ruchomej, wygładzania wykłądniczego 1, 2 i 3 rzędu. Prognozowanie z wykorzystaniem metod regresyjnych
T-L-2Opracowanie modelu symulacyjnego przykładowego procesu produkcyjnego z wykorzystaniem sieci Petriego. Weryfikacja i walidacja modelu symulacyjnego
T-L-3Opracowanie modelu przepływu materiałów w systemie produkcyjnym z wykorzystaniem programu Plan Simulation.
T-W-4Przykłady modelowania procesów produkcyjnych z wykorzystaniem programu Plant Simulation.
T-W-3Modelowanie procesów produkcyjnych z wykorzystaniem sieci Petri.
T-W-2Podstawowe pojęcia teorii modelowania procesów produkcyjnych. Procedura procesu badań symulacyjnych VDI.
T-W-1Wstęp do prognozowania, prognozowanie metodami jakościowymi i ilosciowymi.
Metody nauczaniaM-1Wykład informacyjny i problemowy
M-2ćwiczenia laboratoryjne połaczone z analizą i rozwiązywaniem zadanych problemów.
Sposób ocenyS-1Ocena formująca: Sprawozdania z ćwiczeń laboratoryjnych
S-2Ocena podsumowująca: Rozmowa na temat przeprowadzonych ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi zaplanować badań typowych systemów i nie wie jak przeprowadzić odpowiednie eksperymenty.
3,0Student potrafi zaplanować badania typowych systemów i wie jak przeprowadzić odpowiednie eksperymenty.
3,5Student potrafi wytłumaczyć znaczenie poszczególnych etapów badania prognostycznego i symulacyjnego.
4,0Student potrafi zaplanować badania złożonych systemów i wie jak przeprowadzić odpowiednie eksperymenty.
4,5Student potrafi wyciągnąć wnioski z przeprowadzonych badań korzystając z metod statystycznych.
5,0Student potrafi ocenić dokładność uzyskanych oszacowań.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięZIIP_2A_C03_K01Ma świadomość potrzeby ciągłego dokształcania się w zakresie zastosowań metod statystycznych w procesach wytwarzania. Potrafi efektywnie planować realizacje przyjętych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_2A_K01ma świadomość potrzeby dokształcania, potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-2Nauczyć studentów projektowania i przeprowadzenia eksperymentów.
Metody nauczaniaM-2ćwiczenia laboratoryjne połaczone z analizą i rozwiązywaniem zadanych problemów.
Sposób ocenyS-1Ocena formująca: Sprawozdania z ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Potrafi rozpoznac i wyjasnic działanie systemu produkcyjnego.
3,5
4,0
4,5
5,0