Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (S1)

Sylabus przedmiotu Modelowanie i symulacja systemów:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Modelowanie i symulacja systemów
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Piotr Piela <Piotr.Piela@zut.edu.pl>
Inni nauczyciele Przemysław Korytkowski <Przemyslaw.Korytkowski@zut.edu.pl>, Piotr Piela <Piotr.Piela@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW5 30 2,00,60zaliczenie
laboratoriaL5 30 2,00,40zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Algebra liniowa
W-2Matematyka stosowana ze statystyką 1
W-3Metody numeryczne

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Ukształtowanie umiejętności tworzenia modeli komputerowych obiektów rzeczywistych.
C-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie - określenie zasad zaliczania i oceny.1
T-L-2Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.1
T-L-3Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.2
T-L-4Modelowanie prostych i złożonych modeli dynamicznych.12
T-L-5Tworzenie modeli liniowych.4
T-L-6Identyfikacja modeli systemów dynamicznych.4
T-L-7Realizacja wybranych systemów symulacyjnych.6
30
wykłady
T-W-1Podstawowe określenia i definicje: system i jego własności, modele i ich rodzaje, symulacja komputerowa, proces modelowania. Kategorie modeli matematycznych: definicje, własności i przykłady4
T-W-2Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne2
T-W-3Wprowadzenie do modelowania systemów dynamicznych. Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne.4
T-W-4Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).4
T-W-5Systemy liniowe: metody linearyzacji, założenia i uproszczenia w procesie modelowania. Dynamiczne modele liniowe w przestrzeni stanów. Linearyzacja modeli za pomocą rozkładu w szereg Taylora. Linearyzacja modeli z wykorzystaniem metod identyfikacji.2
T-W-6Rachunek operatorowy, przekształcenie Laplace'a i jego własności. Transmitancja operatorowa. Transmitancje sprzężeń podstawowych. Modele liniowych systemów dynamicznych w postaci transmitancji operatorowej. Zależność pomiędzy równaniami stanu i wyjścia a transmitancją operatorową2
T-W-7Zbieranie danych. Pomiary. Identyfikacja parametrów modeli dynamicznych na podstawie danych pomiarowych2
T-W-8Model komputerowy. Wybór algorytmów obliczeniowych. Wybór oprogramowania. Numeryczne metody rozwiązywania równań różniczkowych.4
T-W-9Weryfikacja, walidacja i kalibracja modelu. Sposoby przedstawiania działania modelu. Wizualizacja.2
T-W-10Rodzaje i budowa systemów symulacyjnych. Przykłady realizacji systemów symulacyjnych.3
T-W-11Zaliczenie wykładu1
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach30
A-L-2Praca własna20
50
wykłady
A-W-1Uczestnictwo w zajęciach30
A-W-2Konsultacje2
A-W-3Praca własna18
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia laboratoryjne - samodzielna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Wykład - zaliczenie pisemne (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 60% maksymalnej liczby punktów.
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Itest_1A_C21_W01
Student posiada wiedzę z zakresu modelowania i symulacji systemów statycznych i dynamicznych.
I_1A_W01C-1T-W-9, T-W-1, T-W-2, T-W-6, T-W-8, T-W-4, T-W-7, T-W-5, T-W-10, T-W-3M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Itest_1A_C21_U01
W wyniku przeprowadzonych zajęć student powinien umieć tworzyć modele komputerowe systemów, opracowywać wizualizację ich działania oraz analizować otrzymane wyniki.
I_1A_U04, I_1A_U08C-1, C-2T-L-6, T-L-5, T-L-4, T-L-2, T-L-3, T-L-7M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
Itest_1A_C21_W01
Student posiada wiedzę z zakresu modelowania i symulacji systemów statycznych i dynamicznych.
2,0Student nie potrafi scharakteryzować i zamodelować prostych systemów.
3,0Student potrafi scharakteryzować i zamodelować proste systemy.
3,5Student potrafi dobrać metodę modelowania i symulacji do systemu.
4,0Student potrafi przeanalizować wpływ niepewności na poszczególnych etapach modelowania i symulacji.
4,5Student potrafi zaplanować badania symulacyjne złożonych systemów.
5,0Student potrafi przewidzieć dokładność wyników symulacji w zależności od metody modelowania i typu danych.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
Itest_1A_C21_U01
W wyniku przeprowadzonych zajęć student powinien umieć tworzyć modele komputerowe systemów, opracowywać wizualizację ich działania oraz analizować otrzymane wyniki.
2,0nie potrafi tworzyć moderli komputerowych
3,0student potrafi tworzyć proste modele komputerowe jednego typu
3,5student potrafi tworzyć proste modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w postaci wykresów
4,0student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w postaci wykresów
4,5student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w trybie ofline
5,0student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w trybie online

Literatura podstawowa

  1. Guntenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2003, III
  2. Banks, Carson, Nelson, Nicol, Discrete-Event System Simulation, Pearson, Upper Saddle River, 2010, 5
  3. Morrison F., Sztuka modelowania układów dynamicznych, WNT, Warszawa, 1996, I
  4. Kelton, Sadowski, Sturrock, Simulation with Arena, McGraw Hill, Boston, 2004, 3
  5. Popov O., Elementy teorii systemów – systemy dynamiczne, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2005, II

Literatura dodatkowa

  1. Klempka R., Stankiewicz A., Modelowanie i symulacja układów dynamicznych, Uczelniane Wydawnictwo Naukowo- Dydaktyczne AGH, Kraków, 2004, I
  2. Ljung L., System identification. Theory for the user, Prentice Hall, Upper Saddle River, New York, 1999, II
  3. Kincaid D., Cheney W., Analiza numeryczna, WNT, Warszawa, 2006, III
  4. Mrozek B., Mrozek Z., MATLAB i Simulink. Poradnik użytkownika, Helion, Gliwice, 2010, III

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie - określenie zasad zaliczania i oceny.1
T-L-2Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.1
T-L-3Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.2
T-L-4Modelowanie prostych i złożonych modeli dynamicznych.12
T-L-5Tworzenie modeli liniowych.4
T-L-6Identyfikacja modeli systemów dynamicznych.4
T-L-7Realizacja wybranych systemów symulacyjnych.6
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe określenia i definicje: system i jego własności, modele i ich rodzaje, symulacja komputerowa, proces modelowania. Kategorie modeli matematycznych: definicje, własności i przykłady4
T-W-2Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne2
T-W-3Wprowadzenie do modelowania systemów dynamicznych. Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne.4
T-W-4Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).4
T-W-5Systemy liniowe: metody linearyzacji, założenia i uproszczenia w procesie modelowania. Dynamiczne modele liniowe w przestrzeni stanów. Linearyzacja modeli za pomocą rozkładu w szereg Taylora. Linearyzacja modeli z wykorzystaniem metod identyfikacji.2
T-W-6Rachunek operatorowy, przekształcenie Laplace'a i jego własności. Transmitancja operatorowa. Transmitancje sprzężeń podstawowych. Modele liniowych systemów dynamicznych w postaci transmitancji operatorowej. Zależność pomiędzy równaniami stanu i wyjścia a transmitancją operatorową2
T-W-7Zbieranie danych. Pomiary. Identyfikacja parametrów modeli dynamicznych na podstawie danych pomiarowych2
T-W-8Model komputerowy. Wybór algorytmów obliczeniowych. Wybór oprogramowania. Numeryczne metody rozwiązywania równań różniczkowych.4
T-W-9Weryfikacja, walidacja i kalibracja modelu. Sposoby przedstawiania działania modelu. Wizualizacja.2
T-W-10Rodzaje i budowa systemów symulacyjnych. Przykłady realizacji systemów symulacyjnych.3
T-W-11Zaliczenie wykładu1
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach30
A-L-2Praca własna20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach30
A-W-2Konsultacje2
A-W-3Praca własna18
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięItest_1A_C21_W01Student posiada wiedzę z zakresu modelowania i symulacji systemów statycznych i dynamicznych.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W01Ma poszerzoną wiedzę w zakresie matematyki stosowanej i obliczeniowej oraz fizyki, niezbędną do formułowania i rozwiązywania problemów w informatyce i dyscyplinach pokrewnych.
Cel przedmiotuC-1Ukształtowanie umiejętności tworzenia modeli komputerowych obiektów rzeczywistych.
Treści programoweT-W-9Weryfikacja, walidacja i kalibracja modelu. Sposoby przedstawiania działania modelu. Wizualizacja.
T-W-1Podstawowe określenia i definicje: system i jego własności, modele i ich rodzaje, symulacja komputerowa, proces modelowania. Kategorie modeli matematycznych: definicje, własności i przykłady
T-W-2Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne
T-W-6Rachunek operatorowy, przekształcenie Laplace'a i jego własności. Transmitancja operatorowa. Transmitancje sprzężeń podstawowych. Modele liniowych systemów dynamicznych w postaci transmitancji operatorowej. Zależność pomiędzy równaniami stanu i wyjścia a transmitancją operatorową
T-W-8Model komputerowy. Wybór algorytmów obliczeniowych. Wybór oprogramowania. Numeryczne metody rozwiązywania równań różniczkowych.
T-W-4Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).
T-W-7Zbieranie danych. Pomiary. Identyfikacja parametrów modeli dynamicznych na podstawie danych pomiarowych
T-W-5Systemy liniowe: metody linearyzacji, założenia i uproszczenia w procesie modelowania. Dynamiczne modele liniowe w przestrzeni stanów. Linearyzacja modeli za pomocą rozkładu w szereg Taylora. Linearyzacja modeli z wykorzystaniem metod identyfikacji.
T-W-10Rodzaje i budowa systemów symulacyjnych. Przykłady realizacji systemów symulacyjnych.
T-W-3Wprowadzenie do modelowania systemów dynamicznych. Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne.
Metody nauczaniaM-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
Sposób ocenyS-1Ocena podsumowująca: Wykład - zaliczenie pisemne (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 60% maksymalnej liczby punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi scharakteryzować i zamodelować prostych systemów.
3,0Student potrafi scharakteryzować i zamodelować proste systemy.
3,5Student potrafi dobrać metodę modelowania i symulacji do systemu.
4,0Student potrafi przeanalizować wpływ niepewności na poszczególnych etapach modelowania i symulacji.
4,5Student potrafi zaplanować badania symulacyjne złożonych systemów.
5,0Student potrafi przewidzieć dokładność wyników symulacji w zależności od metody modelowania i typu danych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięItest_1A_C21_U01W wyniku przeprowadzonych zajęć student powinien umieć tworzyć modele komputerowe systemów, opracowywać wizualizację ich działania oraz analizować otrzymane wyniki.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U04Potrafi identyfikować związki i zależności w procesach zachodzących w systemach rzeczywistych i na tej podstawie tworzyć modele komputerowe oraz przeprowadzać ich symulacje.
I_1A_U08Potrafi rozwiązywać inżynierskie zadania informatyczne z wykorzystaniem metod matematyki obliczeniowej w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-1Ukształtowanie umiejętności tworzenia modeli komputerowych obiektów rzeczywistych.
C-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.
Treści programoweT-L-6Identyfikacja modeli systemów dynamicznych.
T-L-5Tworzenie modeli liniowych.
T-L-4Modelowanie prostych i złożonych modeli dynamicznych.
T-L-2Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.
T-L-3Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.
T-L-7Realizacja wybranych systemów symulacyjnych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów
Kryteria ocenyOcenaKryterium oceny
2,0nie potrafi tworzyć moderli komputerowych
3,0student potrafi tworzyć proste modele komputerowe jednego typu
3,5student potrafi tworzyć proste modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w postaci wykresów
4,0student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w postaci wykresów
4,5student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w trybie ofline
5,0student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizacjie działania tych modeli w trybie online