Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N1)
specjalność: systemy komputerowe i oprogramowanie

Sylabus przedmiotu Metody numeryczne:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Metody numeryczne
Specjalność systemy komputerowe i oprogramowanie
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Leszek Drobiazgiewicz <Leszek.Drobiazgiewicz@zut.edu.pl>
Inni nauczyciele Leszek Drobiazgiewicz <Leszek.Drobiazgiewicz@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW3 14 0,80,40egzamin
laboratoriaL3 16 1,20,60zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza z zakresu analizy matematycznej, algebry oraz matematyki dyskretnej.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Ukształtowanie umiejętności dobierania właściwych algorytmów numerycznych w zależności od postawionego zadania.
C-2Ukształtowanie umiejętności zmniejszania wpływu błędu obliczeń numerycznych na wynik końcowy.
C-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie - higiena pracy z komputerem, zasady pracy i zaliczania.1
T-L-2Praca z pakietem Matlab/Simulink. Definiowanie zmiennych, macierzy i wektorów. Operacje na różnych typach zmiennych. Wykresy 2D. Skrypty funkcyjne. Graficzny interfejs użytkownika.3
T-L-3Przybliżanie funkcji: interpolacja przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych. Dyskretna aproksymacja funkcji.2
T-L-4Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.2
T-L-5Metody poszukiwania pierwiastków równań nieliniowych: metoda bisekcji, siecznych, stycznych i Newtona, fraktale.2
T-L-6Całkowanie numeryczne: metoda prostokątów, trapezów, parabol i metoda Monte Carlo.2
T-L-7Simulink: zasady tworzenia modeli, modele układów równań, modele równań różniczkowych. Parametry symulacji.2
T-L-8Rozwiązywanie równań różniczkowych zwyczajnych: metody Eulera i jej modyfikacje, metoda Rungego-Kutty IV rzędu, ocena dokładności rozwiązań.2
16
wykłady
T-W-1Wprowadzenie.1
T-W-2Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona i ilorazy różnicowe. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.2
T-W-3Aproksymacja funkcji - sformułowanie zadania. Aproksymacja ciągła i dyskretna. Aproksymacja średniokwadratowa. Ekstrapolacja - sformułowanie zadania. Przykłady zastosowań.2
T-W-4Rozwiązywanie równań liniowych - sformułowanie zadania. Metody dokładne: eliminacja Gaussa i jej odmiany, rozkłady macierzy. Poprawianie dokładności rozwiązań. Metody przybliżone: iteracji prostej, Gaussa-Seidla.2
T-W-5Poszukiwanie pierwiastków równań nieliniowych - sformułowanie zadania. Metoda połowienia, metoda regula falsi, metoda siecznych i stycznych. Warunki zbieżności. Rozwiązywanie równań nieliniowych w dziedzinie zespolonej. Określanie liczby pierwiastków.2
T-W-6Całkowanie numeryczne - sformułowanie zadania. Metoda prostokątów, trapezów, parabol oraz metoda Monte Carlo. Dobór kroku całkowania, a dokładność rozwiązań. Przykłady zastosowań. Różniczkowanie numeryczne.2
T-W-7Rozwiązywanie równań różniczkowych - sformułowanie zadania. Metoda Eulera i jej modyfikacje, metody Rungego-Kutty, metody wielokrokowe. Zagadnienie początkowe. Dobór kroku całkowania, a zbieżność i stabilność metod.2
T-W-8Błędy w obliczeniach numerycznych: reprezentacja liczb, rodzaje błędów. Stabilność i uwarunkowanie algorytmu.1
14

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w laboratoriach16
A-L-2Przygotowanie do zajęć9
A-L-3Konsultacje do laboratoriów1
A-L-4Praca własna nad zadaniami dodatkowymi4
30
wykłady
A-W-1Udział w wykładach14
A-W-2Udział w konsultacjach do wykładu2
A-W-3Przygotowanie do zaliczenia12
A-W-4Udział w zaliczeniu2
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład z prezentacją i przykładami
M-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Wykład - egzamin pisemny (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_D/05_W01
Student po zakończonym kursie będzie potrafił wskazać miejsca generowania błędów w obliczeniach numerycznych i będzie potrafił zaproponować sposoby ograniczania tych błędów.
I_1A_W01T1A_W01, T1A_W07InzA_W02C-2, C-3T-W-2, T-W-3, T-L-3, T-W-4, T-L-4, T-W-5, T-L-5, T-W-6, T-L-6, T-W-7, T-W-8, T-L-8M-1, M-2S-1, S-2
I_1A_D/05_W02
Student będzie w stanie dobierać odpowiednie algorytmy numeryczne do rozwiązania postawionych zadań.
I_1A_W01T1A_W01, T1A_W07InzA_W02C-1, C-3T-W-2, T-L-3, T-W-3, T-W-4, T-L-4, T-W-5, T-L-5, T-W-6, T-L-6, T-W-7, T-L-8M-1, M-2S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_D/05_U01
Student powinien umieć posłużyć się pakietem Matlab w celu rozwiązania postawionych problemów.
I_1A_U17, I_1A_U15, I_1A_U19T1A_U01, T1A_U08, T1A_U09, T1A_U13, T1A_U14, T1A_U15, T1A_U16InzA_U01, InzA_U02, InzA_U05, InzA_U06, InzA_U07, InzA_U08C-3T-W-2, T-L-2, T-W-3, T-L-3, T-W-4, T-L-4, T-W-5, T-L-5, T-W-6, T-L-6, T-W-7, T-L-7, T-L-8M-2S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_D/05_K01
Student będzie reprezentował aktywną postawę w samokształceniu i przejawiał kreatywność na zajęciach.
I_1A_K01T1A_K01, T1A_K07C-1, C-2, C-3T-W-2, T-L-3, T-W-3, T-W-4, T-L-4, T-W-5, T-L-5, T-W-6, T-L-6, T-W-7, T-L-8M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_1A_D/05_W01
Student po zakończonym kursie będzie potrafił wskazać miejsca generowania błędów w obliczeniach numerycznych i będzie potrafił zaproponować sposoby ograniczania tych błędów.
2,0Student nie dostrzega problemu występowania błędów w obliczeniach numerycznych.
3,0Student dostrzega problem występowania błędów w obliczeniach numerycznych.
3,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych.
4,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w prostych algorytmach.
4,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w złożonych algorytmach.
5,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia bez zwiększania czasu obliczeń.
I_1A_D/05_W02
Student będzie w stanie dobierać odpowiednie algorytmy numeryczne do rozwiązania postawionych zadań.
2,0Student nie umie zaproponować algorytmów numerycznych do rozwiązywania zadań.
3,0Student umie zaproponować najprostsze algorytmy numeryczne do rozwiązania wybranych zagadnień.
3,5Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień.
4,0Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień oraz uzasadnić swój wybór.
4,5Student umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych oraz uzasadnić swój wybór.
5,0Student umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych, potrafi porównać ich efektywność i na tej podstawie uzasadnić swój wybór.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_1A_D/05_U01
Student powinien umieć posłużyć się pakietem Matlab w celu rozwiązania postawionych problemów.
2,0Student nie potrafi wykorzystać pakietu Matlab do rozwiązywania zadań.
3,0Student potrafi rozwiązać zaledwie kilka zadań pracując w trybie bezpośrednim.
3,5Student potrafi rozwiązać zaledwie kilka zadań tworząc m-pliki.
4,0Student potrafi rozwiązać zaledwie kilka zadań tworząc pliki skryptowe i własne funkcje.
4,5Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy.
5,0Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy oraz stworzyć graficzny interfejs użytkownika.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
I_1A_D/05_K01
Student będzie reprezentował aktywną postawę w samokształceniu i przejawiał kreatywność na zajęciach.
2,0Student nie jest przygotowany do zajęć.
3,0Student jest przygotowany do zajęć w minimalnym stopniu.
3,5Student jest przygotowany do zajęć w minimalnym stopniu i potrafi samodzielnie rozwiązywać proste problemy.
4,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy.
4,5Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach.
5,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach, a także proponować modyfikacje.

Literatura podstawowa

  1. Kincaid D., Cheney W., Analiza numeryczna, WNT, Warszawa, 2006, III
  2. Kiełbasiński A., Schwetlick H., Numeryczna algebra liniowa, WNT, Warszawa, 1992, II
  3. Fortuna Z., Macukow B., Wąsowski J., Metody numeryczne, WNT, Warszawa, 1993, II

Literatura dodatkowa

  1. Bożek B., Metody obliczeniowe i ich komputerowa realizacja, Wydawnictwa AGH, Kraków, 2005, I
  2. Matulewski J., Dziubak T., Sylwestrzak M., Płoszajczak R., Grafika, Fizyka, Metody numeryczne, PWN, Warszawa, 2010, I
  3. Kiciak P., Podstawy modelowania krzywych i powierzchni, WNT, Warszawa, 2005, II
  4. Palczewski A., Równania różniczkowe zwyczajne, WNT, Warszawa, 2004, II
  5. Popov O., Metody numeryczne i optymalizacja, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2003, II

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie - higiena pracy z komputerem, zasady pracy i zaliczania.1
T-L-2Praca z pakietem Matlab/Simulink. Definiowanie zmiennych, macierzy i wektorów. Operacje na różnych typach zmiennych. Wykresy 2D. Skrypty funkcyjne. Graficzny interfejs użytkownika.3
T-L-3Przybliżanie funkcji: interpolacja przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych. Dyskretna aproksymacja funkcji.2
T-L-4Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.2
T-L-5Metody poszukiwania pierwiastków równań nieliniowych: metoda bisekcji, siecznych, stycznych i Newtona, fraktale.2
T-L-6Całkowanie numeryczne: metoda prostokątów, trapezów, parabol i metoda Monte Carlo.2
T-L-7Simulink: zasady tworzenia modeli, modele układów równań, modele równań różniczkowych. Parametry symulacji.2
T-L-8Rozwiązywanie równań różniczkowych zwyczajnych: metody Eulera i jej modyfikacje, metoda Rungego-Kutty IV rzędu, ocena dokładności rozwiązań.2
16

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie.1
T-W-2Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona i ilorazy różnicowe. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.2
T-W-3Aproksymacja funkcji - sformułowanie zadania. Aproksymacja ciągła i dyskretna. Aproksymacja średniokwadratowa. Ekstrapolacja - sformułowanie zadania. Przykłady zastosowań.2
T-W-4Rozwiązywanie równań liniowych - sformułowanie zadania. Metody dokładne: eliminacja Gaussa i jej odmiany, rozkłady macierzy. Poprawianie dokładności rozwiązań. Metody przybliżone: iteracji prostej, Gaussa-Seidla.2
T-W-5Poszukiwanie pierwiastków równań nieliniowych - sformułowanie zadania. Metoda połowienia, metoda regula falsi, metoda siecznych i stycznych. Warunki zbieżności. Rozwiązywanie równań nieliniowych w dziedzinie zespolonej. Określanie liczby pierwiastków.2
T-W-6Całkowanie numeryczne - sformułowanie zadania. Metoda prostokątów, trapezów, parabol oraz metoda Monte Carlo. Dobór kroku całkowania, a dokładność rozwiązań. Przykłady zastosowań. Różniczkowanie numeryczne.2
T-W-7Rozwiązywanie równań różniczkowych - sformułowanie zadania. Metoda Eulera i jej modyfikacje, metody Rungego-Kutty, metody wielokrokowe. Zagadnienie początkowe. Dobór kroku całkowania, a zbieżność i stabilność metod.2
T-W-8Błędy w obliczeniach numerycznych: reprezentacja liczb, rodzaje błędów. Stabilność i uwarunkowanie algorytmu.1
14

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w laboratoriach16
A-L-2Przygotowanie do zajęć9
A-L-3Konsultacje do laboratoriów1
A-L-4Praca własna nad zadaniami dodatkowymi4
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładach14
A-W-2Udział w konsultacjach do wykładu2
A-W-3Przygotowanie do zaliczenia12
A-W-4Udział w zaliczeniu2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_D/05_W01Student po zakończonym kursie będzie potrafił wskazać miejsca generowania błędów w obliczeniach numerycznych i będzie potrafił zaproponować sposoby ograniczania tych błędów.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W01ma wiedzę z matematyki teoretycznej ze szczególnym uwzględnieniem jej stosowanych aspektów, matematyki dyskretnej oraz matematyki stosowanej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Ukształtowanie umiejętności zmniejszania wpływu błędu obliczeń numerycznych na wynik końcowy.
C-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.
Treści programoweT-W-2Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona i ilorazy różnicowe. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.
T-W-3Aproksymacja funkcji - sformułowanie zadania. Aproksymacja ciągła i dyskretna. Aproksymacja średniokwadratowa. Ekstrapolacja - sformułowanie zadania. Przykłady zastosowań.
T-L-3Przybliżanie funkcji: interpolacja przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych. Dyskretna aproksymacja funkcji.
T-W-4Rozwiązywanie równań liniowych - sformułowanie zadania. Metody dokładne: eliminacja Gaussa i jej odmiany, rozkłady macierzy. Poprawianie dokładności rozwiązań. Metody przybliżone: iteracji prostej, Gaussa-Seidla.
T-L-4Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.
T-W-5Poszukiwanie pierwiastków równań nieliniowych - sformułowanie zadania. Metoda połowienia, metoda regula falsi, metoda siecznych i stycznych. Warunki zbieżności. Rozwiązywanie równań nieliniowych w dziedzinie zespolonej. Określanie liczby pierwiastków.
T-L-5Metody poszukiwania pierwiastków równań nieliniowych: metoda bisekcji, siecznych, stycznych i Newtona, fraktale.
T-W-6Całkowanie numeryczne - sformułowanie zadania. Metoda prostokątów, trapezów, parabol oraz metoda Monte Carlo. Dobór kroku całkowania, a dokładność rozwiązań. Przykłady zastosowań. Różniczkowanie numeryczne.
T-L-6Całkowanie numeryczne: metoda prostokątów, trapezów, parabol i metoda Monte Carlo.
T-W-7Rozwiązywanie równań różniczkowych - sformułowanie zadania. Metoda Eulera i jej modyfikacje, metody Rungego-Kutty, metody wielokrokowe. Zagadnienie początkowe. Dobór kroku całkowania, a zbieżność i stabilność metod.
T-W-8Błędy w obliczeniach numerycznych: reprezentacja liczb, rodzaje błędów. Stabilność i uwarunkowanie algorytmu.
T-L-8Rozwiązywanie równań różniczkowych zwyczajnych: metody Eulera i jej modyfikacje, metoda Rungego-Kutty IV rzędu, ocena dokładności rozwiązań.
Metody nauczaniaM-1Wykład z prezentacją i przykładami
M-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów
Sposób ocenyS-1Ocena podsumowująca: Wykład - egzamin pisemny (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie dostrzega problemu występowania błędów w obliczeniach numerycznych.
3,0Student dostrzega problem występowania błędów w obliczeniach numerycznych.
3,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych.
4,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w prostych algorytmach.
4,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w złożonych algorytmach.
5,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia bez zwiększania czasu obliczeń.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_D/05_W02Student będzie w stanie dobierać odpowiednie algorytmy numeryczne do rozwiązania postawionych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W01ma wiedzę z matematyki teoretycznej ze szczególnym uwzględnieniem jej stosowanych aspektów, matematyki dyskretnej oraz matematyki stosowanej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Ukształtowanie umiejętności dobierania właściwych algorytmów numerycznych w zależności od postawionego zadania.
C-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.
Treści programoweT-W-2Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona i ilorazy różnicowe. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.
T-L-3Przybliżanie funkcji: interpolacja przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych. Dyskretna aproksymacja funkcji.
T-W-3Aproksymacja funkcji - sformułowanie zadania. Aproksymacja ciągła i dyskretna. Aproksymacja średniokwadratowa. Ekstrapolacja - sformułowanie zadania. Przykłady zastosowań.
T-W-4Rozwiązywanie równań liniowych - sformułowanie zadania. Metody dokładne: eliminacja Gaussa i jej odmiany, rozkłady macierzy. Poprawianie dokładności rozwiązań. Metody przybliżone: iteracji prostej, Gaussa-Seidla.
T-L-4Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.
T-W-5Poszukiwanie pierwiastków równań nieliniowych - sformułowanie zadania. Metoda połowienia, metoda regula falsi, metoda siecznych i stycznych. Warunki zbieżności. Rozwiązywanie równań nieliniowych w dziedzinie zespolonej. Określanie liczby pierwiastków.
T-L-5Metody poszukiwania pierwiastków równań nieliniowych: metoda bisekcji, siecznych, stycznych i Newtona, fraktale.
T-W-6Całkowanie numeryczne - sformułowanie zadania. Metoda prostokątów, trapezów, parabol oraz metoda Monte Carlo. Dobór kroku całkowania, a dokładność rozwiązań. Przykłady zastosowań. Różniczkowanie numeryczne.
T-L-6Całkowanie numeryczne: metoda prostokątów, trapezów, parabol i metoda Monte Carlo.
T-W-7Rozwiązywanie równań różniczkowych - sformułowanie zadania. Metoda Eulera i jej modyfikacje, metody Rungego-Kutty, metody wielokrokowe. Zagadnienie początkowe. Dobór kroku całkowania, a zbieżność i stabilność metod.
T-L-8Rozwiązywanie równań różniczkowych zwyczajnych: metody Eulera i jej modyfikacje, metoda Rungego-Kutty IV rzędu, ocena dokładności rozwiązań.
Metody nauczaniaM-1Wykład z prezentacją i przykładami
M-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów
Sposób ocenyS-1Ocena podsumowująca: Wykład - egzamin pisemny (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie umie zaproponować algorytmów numerycznych do rozwiązywania zadań.
3,0Student umie zaproponować najprostsze algorytmy numeryczne do rozwiązania wybranych zagadnień.
3,5Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień.
4,0Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień oraz uzasadnić swój wybór.
4,5Student umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych oraz uzasadnić swój wybór.
5,0Student umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych, potrafi porównać ich efektywność i na tej podstawie uzasadnić swój wybór.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_D/05_U01Student powinien umieć posłużyć się pakietem Matlab w celu rozwiązania postawionych problemów.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U17potrafi ocenić przydatność rutynowych metod i narzędzi rozwiązania prostego zadania inżynierskiego, typowego dla reprezentowanej dyscypliny inżynierskiej oraz wybrać i zastosować właściwą metodę i narzędzia
I_1A_U15potrafi wykorzystywać poznane metody, modele matematyczne oraz symulacje komputerowe do rozwiązywania prostych problemów inżynierskich
I_1A_U19ma umiejętność wyboru algorytmu i struktur danych do rozwiązania określonego zadania inżynierskiego
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U14potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
T1A_U16potrafi - zgodnie z zadaną specyfikacją - zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.
Treści programoweT-W-2Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona i ilorazy różnicowe. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.
T-L-2Praca z pakietem Matlab/Simulink. Definiowanie zmiennych, macierzy i wektorów. Operacje na różnych typach zmiennych. Wykresy 2D. Skrypty funkcyjne. Graficzny interfejs użytkownika.
T-W-3Aproksymacja funkcji - sformułowanie zadania. Aproksymacja ciągła i dyskretna. Aproksymacja średniokwadratowa. Ekstrapolacja - sformułowanie zadania. Przykłady zastosowań.
T-L-3Przybliżanie funkcji: interpolacja przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych. Dyskretna aproksymacja funkcji.
T-W-4Rozwiązywanie równań liniowych - sformułowanie zadania. Metody dokładne: eliminacja Gaussa i jej odmiany, rozkłady macierzy. Poprawianie dokładności rozwiązań. Metody przybliżone: iteracji prostej, Gaussa-Seidla.
T-L-4Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.
T-W-5Poszukiwanie pierwiastków równań nieliniowych - sformułowanie zadania. Metoda połowienia, metoda regula falsi, metoda siecznych i stycznych. Warunki zbieżności. Rozwiązywanie równań nieliniowych w dziedzinie zespolonej. Określanie liczby pierwiastków.
T-L-5Metody poszukiwania pierwiastków równań nieliniowych: metoda bisekcji, siecznych, stycznych i Newtona, fraktale.
T-W-6Całkowanie numeryczne - sformułowanie zadania. Metoda prostokątów, trapezów, parabol oraz metoda Monte Carlo. Dobór kroku całkowania, a dokładność rozwiązań. Przykłady zastosowań. Różniczkowanie numeryczne.
T-L-6Całkowanie numeryczne: metoda prostokątów, trapezów, parabol i metoda Monte Carlo.
T-W-7Rozwiązywanie równań różniczkowych - sformułowanie zadania. Metoda Eulera i jej modyfikacje, metody Rungego-Kutty, metody wielokrokowe. Zagadnienie początkowe. Dobór kroku całkowania, a zbieżność i stabilność metod.
T-L-7Simulink: zasady tworzenia modeli, modele układów równań, modele równań różniczkowych. Parametry symulacji.
T-L-8Rozwiązywanie równań różniczkowych zwyczajnych: metody Eulera i jej modyfikacje, metoda Rungego-Kutty IV rzędu, ocena dokładności rozwiązań.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wykorzystać pakietu Matlab do rozwiązywania zadań.
3,0Student potrafi rozwiązać zaledwie kilka zadań pracując w trybie bezpośrednim.
3,5Student potrafi rozwiązać zaledwie kilka zadań tworząc m-pliki.
4,0Student potrafi rozwiązać zaledwie kilka zadań tworząc pliki skryptowe i własne funkcje.
4,5Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy.
5,0Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy oraz stworzyć graficzny interfejs użytkownika.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_D/05_K01Student będzie reprezentował aktywną postawę w samokształceniu i przejawiał kreatywność na zajęciach.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_K01świadomie rozumie potrzeby dokształcania i dzielenia się wiedzą
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K07ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały
Cel przedmiotuC-1Ukształtowanie umiejętności dobierania właściwych algorytmów numerycznych w zależności od postawionego zadania.
C-2Ukształtowanie umiejętności zmniejszania wpływu błędu obliczeń numerycznych na wynik końcowy.
C-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.
Treści programoweT-W-2Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona i ilorazy różnicowe. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.
T-L-3Przybliżanie funkcji: interpolacja przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych. Dyskretna aproksymacja funkcji.
T-W-3Aproksymacja funkcji - sformułowanie zadania. Aproksymacja ciągła i dyskretna. Aproksymacja średniokwadratowa. Ekstrapolacja - sformułowanie zadania. Przykłady zastosowań.
T-W-4Rozwiązywanie równań liniowych - sformułowanie zadania. Metody dokładne: eliminacja Gaussa i jej odmiany, rozkłady macierzy. Poprawianie dokładności rozwiązań. Metody przybliżone: iteracji prostej, Gaussa-Seidla.
T-L-4Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.
T-W-5Poszukiwanie pierwiastków równań nieliniowych - sformułowanie zadania. Metoda połowienia, metoda regula falsi, metoda siecznych i stycznych. Warunki zbieżności. Rozwiązywanie równań nieliniowych w dziedzinie zespolonej. Określanie liczby pierwiastków.
T-L-5Metody poszukiwania pierwiastków równań nieliniowych: metoda bisekcji, siecznych, stycznych i Newtona, fraktale.
T-W-6Całkowanie numeryczne - sformułowanie zadania. Metoda prostokątów, trapezów, parabol oraz metoda Monte Carlo. Dobór kroku całkowania, a dokładność rozwiązań. Przykłady zastosowań. Różniczkowanie numeryczne.
T-L-6Całkowanie numeryczne: metoda prostokątów, trapezów, parabol i metoda Monte Carlo.
T-W-7Rozwiązywanie równań różniczkowych - sformułowanie zadania. Metoda Eulera i jej modyfikacje, metody Rungego-Kutty, metody wielokrokowe. Zagadnienie początkowe. Dobór kroku całkowania, a zbieżność i stabilność metod.
T-L-8Rozwiązywanie równań różniczkowych zwyczajnych: metody Eulera i jej modyfikacje, metoda Rungego-Kutty IV rzędu, ocena dokładności rozwiązań.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie jest przygotowany do zajęć.
3,0Student jest przygotowany do zajęć w minimalnym stopniu.
3,5Student jest przygotowany do zajęć w minimalnym stopniu i potrafi samodzielnie rozwiązywać proste problemy.
4,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy.
4,5Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach.
5,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach, a także proponować modyfikacje.