Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S1)

Sylabus przedmiotu Automatyka:

Informacje podstawowe

Kierunek studiów Energetyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Automatyka
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Mariusz Sosnowski <Mariusz.Sosnowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA5 15 1,20,41zaliczenie
wykładyW5 30 1,80,59zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Algebra i analiza matematyczna
W-2Fizyka (w zakresie szkoły średniej)

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studenta z podstawowymi pojęciami automatyki.
C-2Zapoznanie studenta z budową i działaniem podstawowych urządzeń wykorzystywanych w układach sterowania i regulacji.
C-3Umiejętność doboru nastaw regulatora i wyznaczanie wskaźników stabilności.
C-4Opanowanie teoretycznych i praktycznych umiejętności projektowania (syntezy i analizy) złożonych układów cyfrowych.
C-5Zapoznanie z budową i działaniem sterowników PLC oraz opanowanie podstaw ich programowania.
C-6Umiejętność swobodnego tworzenia programów sterujących dla sterowników PLC.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Analiza funkcjonalna przykładowych, rzeczywistych układów regulacji.2
T-A-2Identyfikacja analityczna mechanicznych i elektrycznych obiektów automatyki – schematy blokowe.2
T-A-3Budowa układów automatyki cyfrowej – przekaźniki i elementy logiczne.2
T-A-4Synteza układów cyfrowych - projektowanie układów przełączających.4
T-A-5Przewidywanie przyszłych stanów i procesów w automatyce.1
T-A-6Sterowniki programowalne PLC – język LAD i przykłady algorytmów sterownia.2
T-A-7Zaliczenie ćwiczeń.2
15
wykłady
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.4
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.4
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.4
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.4
T-W-5Przewidywanie przyszłych stanów i procesów w automatyce. Przestrzeń fazowa.3
T-W-6Warianty techniczne realizacji układów regulacji – układy mechaniczne, pneumatyczne, elektryczne i mieszane. Pomiary wielkości fizycznych w obiektach i procesach (metody i stosowane środki techniczne). Urządzenia wykonawcze i nastawcze – przykładowe rozwiązania.4
T-W-7Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.4
T-W-8Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterownia).3
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1uczestnictwo w zajęciach15
A-A-2Samodzielna realizacja zadań i przygotowanie do zaliczenia17
A-A-3Konsultacje do ćwiczeń2
A-A-4Udział w zaliczeniu2
36
wykłady
A-W-1uczestnictwo w wykładach30
A-W-2Studium literaturowe7
A-W-3Praca własna (powtórzenie poprzednich wykładów)6
A-W-4Przygotowanie do zaliczeń wykładów9
A-W-5Udział w egzaminie2
54

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład multimedialny z elementami konwersatoryjnymi.
M-2Metoda problemowa; w odniesieniu do wykładu, tej jej części, w której dyskutowane jest aktywizujące audytorium rozwiązywanie problemu obliczeniowego.
M-3Ćwiczenia przedmiotowe w rozwiązywaniu zadań.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca: końcowy egzamin pisemny lub ustny.
S-2Ocena formująca: W odniesieniu do ćwiczeń: ocena formująca: dwa pisemne kolokwia.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C33_W01
W odniesieniu do wybranego punktu programu kierunku studiów: student powinien znać podstawowe pojęcia związane z automatyką, scharakteryzować budowę i działanie układu regulacji automatycznej, znać podstawowe techniki badań i projektowania układów regulacji, powinien scharakteryzować budowę i działanie układów regulacji cyfrowej, ze szczególnym uwzględnieniem sterowników programowalnych PLC.
ENE_1A_W11T1A_W01, T1A_W02, T1A_W07InzA_W02C-5, C-1, C-2, C-3, C-4, C-6T-W-8, T-W-3, T-A-2, T-A-4, T-A-6, T-W-6, T-A-3, T-W-1, T-W-2, T-A-5, T-A-1, T-W-7, T-W-4, T-W-5M-3, M-2, M-1S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C33_U01
Student posiada umiejętność dokonywania analizy funkcjonalnej rzeczywistego układu regulacji, umie zbadać własności układu regulacji, dobrać regulator i jego nastawy, potrafi zaprojektować i zaimplementować złożony układ cyfrowy jak również algorytmy sterowania z wykorzystaniem sterowników PLC.
ENE_1A_U12, ENE_1A_U21T1A_U01, T1A_U04, T1A_U05, T1A_U06, T1A_U13, T1A_U14, T1A_U15, T1A_U16InzA_U05, InzA_U06, InzA_U07, InzA_U08C-1, C-4, C-3, C-2, C-5, C-6T-W-7, T-A-2, T-A-3, T-W-4, T-W-5, T-W-1, T-W-8, T-W-3, T-W-2, T-W-6, T-A-4, T-A-6, T-A-1, T-A-5M-2, M-3S-2, S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C33_K01
Świadomie rozumie potrzeby dokształcania się, gdyż kolejne generacje rozwiązań sprzętowych będą wnosiły nowy zakres wiedzy.
ENE_1A_K01T1A_K01C-5, C-4, C-3, C-6, C-1, C-2T-A-4, T-A-2, T-A-1, T-A-6, T-W-4, T-A-5, T-W-7, T-W-2, T-W-8, T-W-6, T-W-5, T-W-3, T-A-3, T-W-1M-2, M-3, M-1S-2, S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ENE_1A_C33_W01
W odniesieniu do wybranego punktu programu kierunku studiów: student powinien znać podstawowe pojęcia związane z automatyką, scharakteryzować budowę i działanie układu regulacji automatycznej, znać podstawowe techniki badań i projektowania układów regulacji, powinien scharakteryzować budowę i działanie układów regulacji cyfrowej, ze szczególnym uwzględnieniem sterowników programowalnych PLC.
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ENE_1A_C33_U01
Student posiada umiejętność dokonywania analizy funkcjonalnej rzeczywistego układu regulacji, umie zbadać własności układu regulacji, dobrać regulator i jego nastawy, potrafi zaprojektować i zaimplementować złożony układ cyfrowy jak również algorytmy sterowania z wykorzystaniem sterowników PLC.
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń nie potrafi wyjaśnić sposobu działania i ma problem z formułowaniem wniosków.
3,0Student rozwiązuje podstawowe zadania. Popełnia błędy. Ćwiczenia praktyczne realizuje poprawnie ale w sposób bierny.
3,5Student posiadł umiejętność w stopniu pośrednim między 3,0 a 4,0.
4,0Student umiejętnie kojarzy i analizuje nabytą wiedzę. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny i potrafi interpretować uzyskane wyniki.
4,5Student posiadł umiejętność w stopniu pośrednim między 4,0 a 5,0.
5,0Student bardzo dobrze kojarzy i analizuje nabytą wiedzę. Zadania rozwiązuje metodami optymalnymi posiłkując się właściwymi technikami obliczeniowymi. Ćwiczenia praktyczne realizuje wzorowo, jest aktywny i potrafi ocenić metodę i uzyskane wyniki.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ENE_1A_C33_K01
Świadomie rozumie potrzeby dokształcania się, gdyż kolejne generacje rozwiązań sprzętowych będą wnosiły nowy zakres wiedzy.
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
3,5
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
4,5
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych.

Literatura podstawowa

  1. Urbaniak A., Podstawy automatyki, Wydawnictwo Politechniki Poznańskiej, Poznań, 2007, 978-83-7143-335-1
  2. Greblicki W., Podstawy automatyki, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006
  3. Kowal J., Podstawy automatyki. T. 1, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2006, 83-7464-108-8
  4. Horla D., Podstawy automatyki : ćwiczenia laboratoryjne, Wydawnictwo Politechniki Poznańskiej, oznań, 2005, 83-7143-533-9
  5. Gessing R., Podstawy automatyki, Politechnika Śląska, Gliwice, 2001, 83-88000-19-5

Literatura dodatkowa

  1. A. Markowski, J. Kostro, A. Lewandowski, Automatyka w pytaniach i odpowiedziach, Wydawnictwo Naukowo Techniczne, Warszawa, 1985
  2. W. Findeisen, Poradnik inżyniera automatyka, Wydawnictwo Naukowo-Techniczne, Warszawa, 1973
  3. Misiurewicz P., Układy automatyki cyfrowej, Wydaw. Szkolne i Pedagogiczne, Warszawa, 1987, 83-02-01230-0
  4. Legierski T., Kasprzyk J., Wyrwał J., Hajda J., Programowanie sterowników PLC., Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 1998

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Analiza funkcjonalna przykładowych, rzeczywistych układów regulacji.2
T-A-2Identyfikacja analityczna mechanicznych i elektrycznych obiektów automatyki – schematy blokowe.2
T-A-3Budowa układów automatyki cyfrowej – przekaźniki i elementy logiczne.2
T-A-4Synteza układów cyfrowych - projektowanie układów przełączających.4
T-A-5Przewidywanie przyszłych stanów i procesów w automatyce.1
T-A-6Sterowniki programowalne PLC – język LAD i przykłady algorytmów sterownia.2
T-A-7Zaliczenie ćwiczeń.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.4
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.4
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.4
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.4
T-W-5Przewidywanie przyszłych stanów i procesów w automatyce. Przestrzeń fazowa.3
T-W-6Warianty techniczne realizacji układów regulacji – układy mechaniczne, pneumatyczne, elektryczne i mieszane. Pomiary wielkości fizycznych w obiektach i procesach (metody i stosowane środki techniczne). Urządzenia wykonawcze i nastawcze – przykładowe rozwiązania.4
T-W-7Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.4
T-W-8Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterownia).3
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1uczestnictwo w zajęciach15
A-A-2Samodzielna realizacja zadań i przygotowanie do zaliczenia17
A-A-3Konsultacje do ćwiczeń2
A-A-4Udział w zaliczeniu2
36
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w wykładach30
A-W-2Studium literaturowe7
A-W-3Praca własna (powtórzenie poprzednich wykładów)6
A-W-4Przygotowanie do zaliczeń wykładów9
A-W-5Udział w egzaminie2
54
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_1A_C33_W01W odniesieniu do wybranego punktu programu kierunku studiów: student powinien znać podstawowe pojęcia związane z automatyką, scharakteryzować budowę i działanie układu regulacji automatycznej, znać podstawowe techniki badań i projektowania układów regulacji, powinien scharakteryzować budowę i działanie układów regulacji cyfrowej, ze szczególnym uwzględnieniem sterowników programowalnych PLC.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_W11Zna metody analizy liniowych układów dynamicznych i podstawowe struktury układów sterowania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-5Zapoznanie z budową i działaniem sterowników PLC oraz opanowanie podstaw ich programowania.
C-1Zapoznanie studenta z podstawowymi pojęciami automatyki.
C-2Zapoznanie studenta z budową i działaniem podstawowych urządzeń wykorzystywanych w układach sterowania i regulacji.
C-3Umiejętność doboru nastaw regulatora i wyznaczanie wskaźników stabilności.
C-4Opanowanie teoretycznych i praktycznych umiejętności projektowania (syntezy i analizy) złożonych układów cyfrowych.
C-6Umiejętność swobodnego tworzenia programów sterujących dla sterowników PLC.
Treści programoweT-W-8Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterownia).
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.
T-A-2Identyfikacja analityczna mechanicznych i elektrycznych obiektów automatyki – schematy blokowe.
T-A-4Synteza układów cyfrowych - projektowanie układów przełączających.
T-A-6Sterowniki programowalne PLC – język LAD i przykłady algorytmów sterownia.
T-W-6Warianty techniczne realizacji układów regulacji – układy mechaniczne, pneumatyczne, elektryczne i mieszane. Pomiary wielkości fizycznych w obiektach i procesach (metody i stosowane środki techniczne). Urządzenia wykonawcze i nastawcze – przykładowe rozwiązania.
T-A-3Budowa układów automatyki cyfrowej – przekaźniki i elementy logiczne.
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.
T-A-5Przewidywanie przyszłych stanów i procesów w automatyce.
T-A-1Analiza funkcjonalna przykładowych, rzeczywistych układów regulacji.
T-W-7Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.
T-W-5Przewidywanie przyszłych stanów i procesów w automatyce. Przestrzeń fazowa.
Metody nauczaniaM-3Ćwiczenia przedmiotowe w rozwiązywaniu zadań.
M-2Metoda problemowa; w odniesieniu do wykładu, tej jej części, w której dyskutowane jest aktywizujące audytorium rozwiązywanie problemu obliczeniowego.
M-1Wykład multimedialny z elementami konwersatoryjnymi.
Sposób ocenyS-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca: końcowy egzamin pisemny lub ustny.
S-2Ocena formująca: W odniesieniu do ćwiczeń: ocena formująca: dwa pisemne kolokwia.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_1A_C33_U01Student posiada umiejętność dokonywania analizy funkcjonalnej rzeczywistego układu regulacji, umie zbadać własności układu regulacji, dobrać regulator i jego nastawy, potrafi zaprojektować i zaimplementować złożony układ cyfrowy jak również algorytmy sterowania z wykorzystaniem sterowników PLC.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_U12Umie dobrać sposoby regulacji i sterowania prostych układów energetycznych
ENE_1A_U21Umie korzystać z literatury, baz danych i innych źródeł; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T1A_U05ma umiejętność samokształcenia się
T1A_U06ma umiejętności językowe w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów, zgodne z wymaganiami określonymi dla poziomu B2 Europejskiego Systemu Opisu Kształcenia Językowego
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U14potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
T1A_U16potrafi - zgodnie z zadaną specyfikacją - zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-1Zapoznanie studenta z podstawowymi pojęciami automatyki.
C-4Opanowanie teoretycznych i praktycznych umiejętności projektowania (syntezy i analizy) złożonych układów cyfrowych.
C-3Umiejętność doboru nastaw regulatora i wyznaczanie wskaźników stabilności.
C-2Zapoznanie studenta z budową i działaniem podstawowych urządzeń wykorzystywanych w układach sterowania i regulacji.
C-5Zapoznanie z budową i działaniem sterowników PLC oraz opanowanie podstaw ich programowania.
C-6Umiejętność swobodnego tworzenia programów sterujących dla sterowników PLC.
Treści programoweT-W-7Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.
T-A-2Identyfikacja analityczna mechanicznych i elektrycznych obiektów automatyki – schematy blokowe.
T-A-3Budowa układów automatyki cyfrowej – przekaźniki i elementy logiczne.
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.
T-W-5Przewidywanie przyszłych stanów i procesów w automatyce. Przestrzeń fazowa.
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.
T-W-8Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterownia).
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.
T-W-6Warianty techniczne realizacji układów regulacji – układy mechaniczne, pneumatyczne, elektryczne i mieszane. Pomiary wielkości fizycznych w obiektach i procesach (metody i stosowane środki techniczne). Urządzenia wykonawcze i nastawcze – przykładowe rozwiązania.
T-A-4Synteza układów cyfrowych - projektowanie układów przełączających.
T-A-6Sterowniki programowalne PLC – język LAD i przykłady algorytmów sterownia.
T-A-1Analiza funkcjonalna przykładowych, rzeczywistych układów regulacji.
T-A-5Przewidywanie przyszłych stanów i procesów w automatyce.
Metody nauczaniaM-2Metoda problemowa; w odniesieniu do wykładu, tej jej części, w której dyskutowane jest aktywizujące audytorium rozwiązywanie problemu obliczeniowego.
M-3Ćwiczenia przedmiotowe w rozwiązywaniu zadań.
Sposób ocenyS-2Ocena formująca: W odniesieniu do ćwiczeń: ocena formująca: dwa pisemne kolokwia.
S-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca: końcowy egzamin pisemny lub ustny.
Kryteria ocenyOcenaKryterium oceny
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń nie potrafi wyjaśnić sposobu działania i ma problem z formułowaniem wniosków.
3,0Student rozwiązuje podstawowe zadania. Popełnia błędy. Ćwiczenia praktyczne realizuje poprawnie ale w sposób bierny.
3,5Student posiadł umiejętność w stopniu pośrednim między 3,0 a 4,0.
4,0Student umiejętnie kojarzy i analizuje nabytą wiedzę. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny i potrafi interpretować uzyskane wyniki.
4,5Student posiadł umiejętność w stopniu pośrednim między 4,0 a 5,0.
5,0Student bardzo dobrze kojarzy i analizuje nabytą wiedzę. Zadania rozwiązuje metodami optymalnymi posiłkując się właściwymi technikami obliczeniowymi. Ćwiczenia praktyczne realizuje wzorowo, jest aktywny i potrafi ocenić metodę i uzyskane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_1A_C33_K01Świadomie rozumie potrzeby dokształcania się, gdyż kolejne generacje rozwiązań sprzętowych będą wnosiły nowy zakres wiedzy.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_K01Rozumie potrzebę ciągłego dokształcania się – podnoszenia kompetencji zawodowych i osobistych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-5Zapoznanie z budową i działaniem sterowników PLC oraz opanowanie podstaw ich programowania.
C-4Opanowanie teoretycznych i praktycznych umiejętności projektowania (syntezy i analizy) złożonych układów cyfrowych.
C-3Umiejętność doboru nastaw regulatora i wyznaczanie wskaźników stabilności.
C-6Umiejętność swobodnego tworzenia programów sterujących dla sterowników PLC.
C-1Zapoznanie studenta z podstawowymi pojęciami automatyki.
C-2Zapoznanie studenta z budową i działaniem podstawowych urządzeń wykorzystywanych w układach sterowania i regulacji.
Treści programoweT-A-4Synteza układów cyfrowych - projektowanie układów przełączających.
T-A-2Identyfikacja analityczna mechanicznych i elektrycznych obiektów automatyki – schematy blokowe.
T-A-1Analiza funkcjonalna przykładowych, rzeczywistych układów regulacji.
T-A-6Sterowniki programowalne PLC – język LAD i przykłady algorytmów sterownia.
T-W-4Podział regulatorów. Algorytmy regulacji. Wpływ położenia biegunów na jakość regulacji i stabilności. Reguły Zieglera-Nicholsona doboru nastaw regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów.
T-A-5Przewidywanie przyszłych stanów i procesów w automatyce.
T-W-7Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie złożonych układów cyfrowych - przykłady. Struktura i zasada działania układu regulacji cyfrowej.
T-W-2Metody opisu podstawowych elementów automatyki. Przekształcenie Laplace’a. Transmitancja operatorowa i częstotliwościowa, charakterystyki logarytmiczne. Odpowiedź skokowa i impulsowa.
T-W-8Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterownia).
T-W-6Warianty techniczne realizacji układów regulacji – układy mechaniczne, pneumatyczne, elektryczne i mieszane. Pomiary wielkości fizycznych w obiektach i procesach (metody i stosowane środki techniczne). Urządzenia wykonawcze i nastawcze – przykładowe rozwiązania.
T-W-5Przewidywanie przyszłych stanów i procesów w automatyce. Przestrzeń fazowa.
T-W-3Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Charakterystyki podstawowych elementów. Schematy blokowe.
T-A-3Budowa układów automatyki cyfrowej – przekaźniki i elementy logiczne.
T-W-1Podstawowe pojęcia automatyki. Struktura funkcjonalna i elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Typy układów regulacji – opis matematyczny. Cel regulacji i przykłady rzeczywistych układów regulacji. Typy obiektów i sygnałów w układach regulacji.
Metody nauczaniaM-2Metoda problemowa; w odniesieniu do wykładu, tej jej części, w której dyskutowane jest aktywizujące audytorium rozwiązywanie problemu obliczeniowego.
M-3Ćwiczenia przedmiotowe w rozwiązywaniu zadań.
M-1Wykład multimedialny z elementami konwersatoryjnymi.
Sposób ocenyS-2Ocena formująca: W odniesieniu do ćwiczeń: ocena formująca: dwa pisemne kolokwia.
S-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca: końcowy egzamin pisemny lub ustny.
Kryteria ocenyOcenaKryterium oceny
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
3,5
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
4,5
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych.