Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (N2)
specjalność: automatyzacja procesów wytwarzania

Sylabus przedmiotu Modelowanie systemów wytwarzania:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Modelowanie systemów wytwarzania
Specjalność automatyzacja procesów wytwarzania
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP2 15 2,00,44zaliczenie
wykładyW2 15 2,00,56egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza o systemach produkcyjnych

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu HPSim do budowy modelu sterowania pracą robota przemysłowego.8
T-P-2Modelowanie procesów przepływu przedmiotów z wykorzystaniem programu eM-Plant. Modelowanie przykładowych algorytmów sterowania pracą systemu wytwarzania oraz badania ich efektywności.7
15
wykłady
T-W-1Podstawowe pojęcia teorii systemów i modelowania. Systemy wytwarzania – podstawowe zadania badawcze.3
T-W-2Metodyka modelowania symulacyjnego systemów wytwarzania. Identyfikacja zadań badawczych. Model opisowy, teoriomnogościowy, matematyczny. Zasady budowy modelu algorytmicznego.3
T-W-3Podstawowe pojęcia z teorii masowej obsługi. Zasady budowy, testowania i weryfikacji modelu symulacyjnego. Zasady prowadzenia badań eksperymentalnych metodą symulacji komputerowej. Elementy teorii Sieci Petriego. Podstawowe definicje Sieci Petriego.3
T-W-4Modelowanie współbieżnej realizacji procesów produkcyjnych. Modelowanie przepływu przedmiotów w systemach wytwarzania. Przykłady zastosowanie Sieci Petriego do modelowania systemów.3
T-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.3
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1uczestnictwo w zajęciach15
A-P-2Opracowanie sprawozdań44
59
wykłady
A-W-1Studiowanie literatury25
A-W-2Przygotowanie się do zaliczenia20
A-W-3uczestnictwo w zajęciach15
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające w postaci wykładu informacyjnego.
M-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Zaliczenie opracowanych sprawozdań z ćwiczeń laboratoryjnych
S-2Ocena podsumowująca: Zaliczenie pisemne lub ustne obejmujące zakres tematyczny wykładów i ćwiczeń
S-3Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_APW/04_W01
Student zna podstawowe metody komputerowego modelowania procesów produkcyjnych
MBM_2A_W08T2A_W05C-1T-W-3, T-W-1, T-W-2M-1, M-2S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_APW/04_U01
Student umie opracować komputerowy model procesów produkcyjnych oraz dokonać jego analizy.
MBM_2A_U09, MBM_2A_U02, MBM_2A_U03T2A_U02, T2A_U03, T2A_U09C-1T-W-5, T-W-4M-2S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_APW/04_K01
Właściwa postawa i motywacja do pracy w grupie.
MBM_2A_K03T2A_K03C-1T-W-5, T-P-1, T-P-2M-2S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
MBM_2A_APW/04_W01
Student zna podstawowe metody komputerowego modelowania procesów produkcyjnych
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy. Czasem nie wie jak ją wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z akresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
MBM_2A_APW/04_U01
Student umie opracować komputerowy model procesów produkcyjnych oraz dokonać jego analizy.
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń laboratoryjnych nie potrafi wyjaśnić sposobu działania progrmu i ma problemy z formułowaniem wniosków.
3,0Student rozwiązuje podstwowe zadania. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Student ma dobre umiejętności kojarzenia i analizy nabytej wiedzy. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować uzyskane wyniki.
4,5Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Student ma bardzo dobre umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i uzyskane wyniki.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
MBM_2A_APW/04_K01
Właściwa postawa i motywacja do pracy w grupie.
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
3,5Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
4,5Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych.

Literatura podstawowa

  1. Banaszak Z. Jamplolski L.:, Komputerowo wspomagane modelowanie elastycznych systemów produkcyjnych., WNT, Warszawa, 1999
  2. Ryszard Zdanowicz, Modelowanie i symulacja procesów wytwarzania, Politechniki Śląskiej, Gliwice, 2007

Literatura dodatkowa

  1. Marcin Szpyrka, Sieci Petriego w modelowaniu i analizie systemów współbieżnych, WNT, Warszawa, 2008

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu HPSim do budowy modelu sterowania pracą robota przemysłowego.8
T-P-2Modelowanie procesów przepływu przedmiotów z wykorzystaniem programu eM-Plant. Modelowanie przykładowych algorytmów sterowania pracą systemu wytwarzania oraz badania ich efektywności.7
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia teorii systemów i modelowania. Systemy wytwarzania – podstawowe zadania badawcze.3
T-W-2Metodyka modelowania symulacyjnego systemów wytwarzania. Identyfikacja zadań badawczych. Model opisowy, teoriomnogościowy, matematyczny. Zasady budowy modelu algorytmicznego.3
T-W-3Podstawowe pojęcia z teorii masowej obsługi. Zasady budowy, testowania i weryfikacji modelu symulacyjnego. Zasady prowadzenia badań eksperymentalnych metodą symulacji komputerowej. Elementy teorii Sieci Petriego. Podstawowe definicje Sieci Petriego.3
T-W-4Modelowanie współbieżnej realizacji procesów produkcyjnych. Modelowanie przepływu przedmiotów w systemach wytwarzania. Przykłady zastosowanie Sieci Petriego do modelowania systemów.3
T-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.3
15

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1uczestnictwo w zajęciach15
A-P-2Opracowanie sprawozdań44
59
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Studiowanie literatury25
A-W-2Przygotowanie się do zaliczenia20
A-W-3uczestnictwo w zajęciach15
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_APW/04_W01Student zna podstawowe metody komputerowego modelowania procesów produkcyjnych
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_W08ma poszerzoną wiedzę i zna trendy rozwojowe i główne osiągnięcia naukowe w swojej specjalności, w obszarach konstrukcji, technologii i eksploatacji maszyn i urządzeń, a także energetyki oraz zarządzania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W05ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów i pokrewnych dyscyplin naukowych
Cel przedmiotuC-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.
Treści programoweT-W-3Podstawowe pojęcia z teorii masowej obsługi. Zasady budowy, testowania i weryfikacji modelu symulacyjnego. Zasady prowadzenia badań eksperymentalnych metodą symulacji komputerowej. Elementy teorii Sieci Petriego. Podstawowe definicje Sieci Petriego.
T-W-1Podstawowe pojęcia teorii systemów i modelowania. Systemy wytwarzania – podstawowe zadania badawcze.
T-W-2Metodyka modelowania symulacyjnego systemów wytwarzania. Identyfikacja zadań badawczych. Model opisowy, teoriomnogościowy, matematyczny. Zasady budowy modelu algorytmicznego.
Metody nauczaniaM-1Metody podające w postaci wykładu informacyjnego.
M-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie pisemne lub ustne obejmujące zakres tematyczny wykładów i ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy. Czasem nie wie jak ją wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z akresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_APW/04_U01Student umie opracować komputerowy model procesów produkcyjnych oraz dokonać jego analizy.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne oraz eksperymentalne
MBM_2A_U02potrafi porozumiewać się w środowisku inżynierów mechaników oraz w innych środowiskach technicznych, również w języku obcym. Potrafi wykorzystywać różnorodne techniki przekazu informacji w tym systemy CAx.
MBM_2A_U03potrafi przygotować w języku polskim opracowanie naukowe oraz krótkie doniesienie naukowe w języku obcym przedstawiające wyniki własnych badań naukowych z zakresu swojej specjalności, wykorzystując przyjęte w jego specjalności konwencje i standardy przekazu
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów
T2A_U03potrafi przygotować opracowanie naukowe w języku polskim i krótkie doniesienie naukowe w języku obcym, uznawanym za podstawowy dla dziedzin nauki i dyscyplin naukowych właściwych dla studiowanego kierunku studiów, przedstawiające wyniki własnych badań naukowych
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
Cel przedmiotuC-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.
Treści programoweT-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.
T-W-4Modelowanie współbieżnej realizacji procesów produkcyjnych. Modelowanie przepływu przedmiotów w systemach wytwarzania. Przykłady zastosowanie Sieci Petriego do modelowania systemów.
Metody nauczaniaM-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.
Sposób ocenyS-1Ocena formująca: Zaliczenie opracowanych sprawozdań z ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Nie potrafi poprawnie rozwiązywać zadań. Przy wykonywaniu ćwiczeń laboratoryjnych nie potrafi wyjaśnić sposobu działania progrmu i ma problemy z formułowaniem wniosków.
3,0Student rozwiązuje podstwowe zadania. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Student ma dobre umiejętności kojarzenia i analizy nabytej wiedzy. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować uzyskane wyniki.
4,5Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Student ma bardzo dobre umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i uzyskane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_APW/04_K01Właściwa postawa i motywacja do pracy w grupie.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
Cel przedmiotuC-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.
Treści programoweT-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.
T-P-1Modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu HPSim do budowy modelu sterowania pracą robota przemysłowego.
T-P-2Modelowanie procesów przepływu przedmiotów z wykorzystaniem programu eM-Plant. Modelowanie przykładowych algorytmów sterowania pracą systemu wytwarzania oraz badania ich efektywności.
Metody nauczaniaM-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.
Sposób ocenyS-1Ocena formująca: Zaliczenie opracowanych sprawozdań z ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
3,5Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach.
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
4,5Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji.
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych.