Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Inżynieria bezpieczeństwa (S1)
specjalność: Bezpieczeństwo systemów transportowych

Sylabus przedmiotu Fizyka 2:

Informacje podstawowe

Kierunek studiów Inżynieria bezpieczeństwa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Fizyka 2
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Fizyki
Nauczyciel odpowiedzialny Janusz Typek <Janusz.Typek@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 30 2,00,41zaliczenie
wykładyW2 15 1,00,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Zna podstawy fizyki ze szkoły średniej (podstawowe wielkości fizyczne; zasadnicze zjawiska fizyczne w otaczającym świecie) oraz z kursu Fizyka 1
W-2Zna podstawy algebry (wektory, macierze, podstawowe funkcje matematyczne; rozwiązywanie równań, iloczyn skalarny, wektorowy; pojęcie pochodnej i całki).
W-3Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem
W-4Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Rozwinięcie umiejętności komunikacji i pracy w grupie

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zajęcia organizacyjne2
T-L-2Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów2
T-L-3Wykonanie 10 ćwiczeń laboratoryjnych20
T-L-4Zaliczanie ćwiczeń laboratoryjnych6
30
wykłady
T-W-1Podstawy i zastosowania analizy wymiarowej3
T-W-2Analiza niepewności pomiarowych4
T-W-3Elementy szczególnej i ogólnej teorii względności4
T-W-4Fizyka alternatywnych źródeł energii3
T-W-5Egzamin1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań20
50
wykłady
A-W-1Udział w wykładzie15
A-W-2Przygotowanie do egzaminu8
A-W-3Udział w egzaminie2
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IB_1A_B04_W01
Student zna podstawy analizy wymiarowej, zna prawa mechaniki relatywistycznej, zna podstawy energetyki jadrowej i energetyk alternatywnych
IB_1A_W02T1A_W01InzA_W02C-1T-W-3, T-W-1, T-W-4M-1S-1
IB_1A_B04_W02
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi analizować wyniki i zna elementy teorii niepewności pomiarowych
IB_1A_W02T1A_W01InzA_W02C-2, C-3T-L-4, T-L-2, T-L-3, T-W-2M-3S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IB_1A_B04_U01
Student posiada umiejętność wykonania pomiarów podstawowych wielkości fizycznych z zakresu mechaniki, elektryczności, magnetyzmu, ciepła i optyki, potrafi oszacować niepewności pomiarowe
IB_1A_U09T1A_U08InzA_U01C-1, C-2, C-3T-L-2, T-L-3M-3S-2
IB_1A_B04_U02
Student potrafi zastosować uzyskaną wiedzę z fizyki do wykonania oszacowań parametrów fizycznych w prostych sytuacjach inżynierskich.
IB_1A_U10T1A_U08, T1A_U09InzA_U01, InzA_U02C-1T-W-1, T-W-3, T-W-2M-2, M-1S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IB_1A_B04_K01
Student potrafi pracować w zespole
IB_1A_K04T1A_K03, T1A_K04C-4T-L-4, T-L-3M-3S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
IB_1A_B04_W01
Student zna podstawy analizy wymiarowej, zna prawa mechaniki relatywistycznej, zna podstawy energetyki jadrowej i energetyk alternatywnych
2,0Na egzaminie pisemnym uzyskał mniej niz 50% możliwych punktów procentowych.
3,0Na egzaminie pisemnym uzyskał od 50% do 65% możliwych punktów procentowych.
3,5Na egzaminie pisemnym uzyskał od 66% do 80% możliwych punktów procentowych.
4,0Na egzaminie pisemnym uzyskał od 81% do 90% możliwych punktów procentowych.
4,5Na egzaminie pisemnym uzyskał od 91% do 95% możliwych punktów procentowych.
5,0Na egzaminie pisemnym uzyskał od 96% do 100% możliwych punktów procentowych.
IB_1A_B04_W02
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi analizować wyniki i zna elementy teorii niepewności pomiarowych
2,0Student nie zaliczył wszystkich 10 ćwiczeń laboratoryjnych
3,0Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 3,00-3, 25.
3,5Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 3,26-3, 75.
4,0Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 3,76-4, 25.
4,5Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 4,26-4, 75.
5,0Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 4,76-5,00.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
IB_1A_B04_U01
Student posiada umiejętność wykonania pomiarów podstawowych wielkości fizycznych z zakresu mechaniki, elektryczności, magnetyzmu, ciepła i optyki, potrafi oszacować niepewności pomiarowe
2,0Nie zaliczył 10 ćwiczeń laboratoryjnych
3,0Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 3,00-3,25
3,5Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 3,26-3,75
4,0Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 3,76-4,25
4,5Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 4.26-4,75
5,0Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 4,76-5,00
IB_1A_B04_U02
Student potrafi zastosować uzyskaną wiedzę z fizyki do wykonania oszacowań parametrów fizycznych w prostych sytuacjach inżynierskich.
2,0Na egzaminie pisemnym uzyskał mniej niż 50% możliwych punktów procentowych
3,0Na egzaminie pisemnym uzyskał od 50% do 65% możliwych punktów procentowych
3,5Na egzaminie pisemnym uzyskał od 66% do 80% możliwych punktów procentowych
4,0Na egzaminie pisemnym uzyskał od 81% do 90% możliwych punktów procentowych
4,5Na egzaminie pisemnym uzyskał od 91% do 95% możliwych punktów procentowych
5,0Na egzaminie pisemnym uzyskał od 96% do 100% możliwych punktów procentowych

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
IB_1A_B04_K01
Student potrafi pracować w zespole
2,0Student nie potrafi pracowac w laboratoryjnym zespole dwuosobowym
3,0Większość prac związanych z opracowaniem ćwiczenia laboratoryjnego wykonywana jest samodzielnie
3,5Zadawalający podział prac nad opracowaniem laboratoryjnym
4,0Studenci dobrze współpracują nad opracowaniem ćwiczenia laboratoryjnego
4,5Bardzo dobra współpraca w zespole dwuosobowym
5,0Idealna współpraca studentów w zespole dwuosobowym

Literatura podstawowa

  1. D. Halliday, R. Resnick, Fizyka, T. I i II, PWN, Warszawa, 1989
  2. T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  3. T. Rewaj (red.), Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1998
  4. I. Kruk, J. Typek (red.), Ćwiczenia laboratoryjne z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007

Literatura dodatkowa

  1. J. Typek, materiały internetowe, http://typjan.zut.edu.pl, 2012

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zajęcia organizacyjne2
T-L-2Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów2
T-L-3Wykonanie 10 ćwiczeń laboratoryjnych20
T-L-4Zaliczanie ćwiczeń laboratoryjnych6
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawy i zastosowania analizy wymiarowej3
T-W-2Analiza niepewności pomiarowych4
T-W-3Elementy szczególnej i ogólnej teorii względności4
T-W-4Fizyka alternatywnych źródeł energii3
T-W-5Egzamin1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładzie15
A-W-2Przygotowanie do egzaminu8
A-W-3Udział w egzaminie2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_B04_W01Student zna podstawy analizy wymiarowej, zna prawa mechaniki relatywistycznej, zna podstawy energetyki jadrowej i energetyk alternatywnych
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_W02ma wiedzę w zakresie fizyki, obejmującą mechanikę, termodynamikę, optykę, elektryczność i magnetyzm, fizykę jądrową oraz fizykę ciała stałego, niezbędną do: 1) pomiaru i określania wielkości fizycznych, 2) zrozumienia podstawowych zjawisk fizycznych i procesów występujących w przyrodzie, 3) wykorzystania praw przyrody w technice i życiu codziennym, 4) rozumienia zachowania otaczającego nas świata.
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
Treści programoweT-W-3Elementy szczególnej i ogólnej teorii względności
T-W-1Podstawy i zastosowania analizy wymiarowej
T-W-4Fizyka alternatywnych źródeł energii
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
Kryteria ocenyOcenaKryterium oceny
2,0Na egzaminie pisemnym uzyskał mniej niz 50% możliwych punktów procentowych.
3,0Na egzaminie pisemnym uzyskał od 50% do 65% możliwych punktów procentowych.
3,5Na egzaminie pisemnym uzyskał od 66% do 80% możliwych punktów procentowych.
4,0Na egzaminie pisemnym uzyskał od 81% do 90% możliwych punktów procentowych.
4,5Na egzaminie pisemnym uzyskał od 91% do 95% możliwych punktów procentowych.
5,0Na egzaminie pisemnym uzyskał od 96% do 100% możliwych punktów procentowych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_B04_W02Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi analizować wyniki i zna elementy teorii niepewności pomiarowych
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_W02ma wiedzę w zakresie fizyki, obejmującą mechanikę, termodynamikę, optykę, elektryczność i magnetyzm, fizykę jądrową oraz fizykę ciała stałego, niezbędną do: 1) pomiaru i określania wielkości fizycznych, 2) zrozumienia podstawowych zjawisk fizycznych i procesów występujących w przyrodzie, 3) wykorzystania praw przyrody w technice i życiu codziennym, 4) rozumienia zachowania otaczającego nas świata.
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
Treści programoweT-L-4Zaliczanie ćwiczeń laboratoryjnych
T-L-2Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów
T-L-3Wykonanie 10 ćwiczeń laboratoryjnych
T-W-2Analiza niepewności pomiarowych
Metody nauczaniaM-3Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zaliczył wszystkich 10 ćwiczeń laboratoryjnych
3,0Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 3,00-3, 25.
3,5Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 3,26-3, 75.
4,0Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 3,76-4, 25.
4,5Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 4,26-4, 75.
5,0Student zaliczył wszystkie 10 ćwiczeń laboratoryjnych i ocena średnia z tych 10 ćwiczen mieści się w przedziale 4,76-5,00.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_B04_U01Student posiada umiejętność wykonania pomiarów podstawowych wielkości fizycznych z zakresu mechaniki, elektryczności, magnetyzmu, ciepła i optyki, potrafi oszacować niepewności pomiarowe
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_U09potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
Treści programoweT-L-2Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów
T-L-3Wykonanie 10 ćwiczeń laboratoryjnych
Metody nauczaniaM-3Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Nie zaliczył 10 ćwiczeń laboratoryjnych
3,0Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 3,00-3,25
3,5Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 3,26-3,75
4,0Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 3,76-4,25
4,5Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 4.26-4,75
5,0Zaliczył wszystkie 10 ćwiczeń laboratoryjnych ze średnią w przedziale 4,76-5,00
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_B04_U02Student potrafi zastosować uzyskaną wiedzę z fizyki do wykonania oszacowań parametrów fizycznych w prostych sytuacjach inżynierskich.
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_U10potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne i eksperymentalne; potrafi opracować proste modele procesów i systemów o ograniczonej liczbie czynników zagrożenia, opracować proste symulacje komputerowe lub eksperymenty, interpretować uzyskane wyniki i wyciągać wnioski dotyczące oceny ryzyka i wyboru metod zabezpieczenia
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
Treści programoweT-W-1Podstawy i zastosowania analizy wymiarowej
T-W-3Elementy szczególnej i ogólnej teorii względności
T-W-2Analiza niepewności pomiarowych
Metody nauczaniaM-2Wykład z pokazami eksperymentów fizycznych
M-1Wykład informacyjny z użyciem środków audiowizualnych
Sposób ocenyS-2Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Na egzaminie pisemnym uzyskał mniej niż 50% możliwych punktów procentowych
3,0Na egzaminie pisemnym uzyskał od 50% do 65% możliwych punktów procentowych
3,5Na egzaminie pisemnym uzyskał od 66% do 80% możliwych punktów procentowych
4,0Na egzaminie pisemnym uzyskał od 81% do 90% możliwych punktów procentowych
4,5Na egzaminie pisemnym uzyskał od 91% do 95% możliwych punktów procentowych
5,0Na egzaminie pisemnym uzyskał od 96% do 100% możliwych punktów procentowych
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_B04_K01Student potrafi pracować w zespole
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_K04ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Cel przedmiotuC-4Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-L-4Zaliczanie ćwiczeń laboratoryjnych
T-L-3Wykonanie 10 ćwiczeń laboratoryjnych
Metody nauczaniaM-3Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi pracowac w laboratoryjnym zespole dwuosobowym
3,0Większość prac związanych z opracowaniem ćwiczenia laboratoryjnego wykonywana jest samodzielnie
3,5Zadawalający podział prac nad opracowaniem laboratoryjnym
4,0Studenci dobrze współpracują nad opracowaniem ćwiczenia laboratoryjnego
4,5Bardzo dobra współpraca w zespole dwuosobowym
5,0Idealna współpraca studentów w zespole dwuosobowym