Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (S2)
specjalność: Inżynieria bioprocesowa
Sylabus przedmiotu Projektowanie systemów procesowych:
Informacje podstawowe
Kierunek studiów | Inżynieria chemiczna i procesowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Projektowanie systemów procesowych | ||
Specjalność | Zarządzanie i eksploatacja w systemach produkcyjnych | ||
Jednostka prowadząca | Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska | ||
Nauczyciel odpowiedzialny | Barbara Zakrzewska <Barbara.Zakrzewska@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 7,0 | ECTS (formy) | 7,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Procesy cieplne i aparaty, Procesy dyfuzyjne i aparaty, Inżynieria procesów reaktorowych |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z podstawami projektowania systemów procesowych, między innymi elementami projektu procesowego, strategii projektowania. Przekazanie wiedzy na temat zasad doboru procesów i ich parametrów pracy, heurystyk projektowych i programów symulacyjnych. |
C-2 | Przygotowanie studenta do przeprowadzenia projektu procesowego. Student potrafi ocenić warunki, które muszą być spełnione do realizacji projektu obejmującego budowę lub modernizację instalacji i przeprowadzić proces projektowy. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Każdy ze studentów zostanie członkiem zespołu projektowego i będzie zobowiązany do pracy na rzecz wykonania projektu procesowego określonej instalacji przemysłowej, zgodnie z założeniami przemysłowymi. Zaprojektowana instalacja powinna być bezpieczna, funkcjonalna, przewidywać innowacyjne rozwiązania, spełniać przesłanki ekonomiczne i środowiskowe oraz zapewniać pożądany produkt końcowy o ściśle określonych cechach. | 60 |
60 | ||
wykłady | ||
T-W-1 | Wiadomości wstępne: przedmiot i zakres projektowania procesowego, projekt procesowy, projekt technologicznym, system. Cykl badawczo-projektowo-wdrożeniowy. Podstawowe dokumenty na drodze do inwestycji | 6 |
T-W-2 | Elementy projektu procesowego: założenia badawcze i przemysłowe, uzasadnienie wyboru i opis metody technologicznej, schemat ideowy, bilans masowy, bilans cieplny, charakterystyka mediów, dobór aparatów technologicznych, schemat technologiczny, harmonogram pracy aparatów, czynniki energetyczne i pomocnicze, dobór materiałów i zagadnienia korozji, pomiary i automatyka procesu, ścieki i odpady, zagadnienia bezpieczeństwa. | 9 |
T-W-3 | Strategie projektowania systemów technologicznych: hierarchiczna i jednoczesna, wraz z przykładami. | 6 |
T-W-4 | Zasady doboru procesów i ich parametrów pracy. Heurystyki projektowe. | 6 |
T-W-5 | Obliczenia symulacyjne systemów procesowych i programy symulacyjne. | 6 |
T-W-6 | Analiza stopni swobody i modele wybranych procesów. | 6 |
T-W-7 | Aspen Plus - przykład symulatora procesowego. | 6 |
45 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | Uczestnictwo w zajęciach | 60 |
A-P-2 | Praca własna - przygotowanie raportów | 20 |
A-P-3 | Studiowanie literatury przedmiotu | 30 |
A-P-4 | Konsulatcje z nauczycielem | 10 |
120 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach. | 45 |
A-W-2 | Praca własna - przygotowanie do zaliczenia, studiowanie literatury przedmiotu. | 40 |
A-W-3 | Konsultacje z nauczycielem. | 5 |
90 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Metody podające - wykład informacyjny |
M-2 | Metoda praktyczna - metoda projektów |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Egzamin - forma pisemna, 90 min. |
S-2 | Ocena formująca: Projekt będzie oceniany w sposób ciągły w oparciu o cząstkowe elementy. Nie przewidziano pisemnego finalnego zaliczenia z przedmiotu. Zespoły projektowe będą dostarczały raporty w określonych terminach, które będą oceniane przez prowadzącego zgodnie z następującymi kryteriami: • organizacja zespołu projektowego, • komunikacja w zespole, • umiejętność stosowania zasad inżynierskich, tzw. Dobra Praktyka Inżynierska, • uwzględnienie kwestii środowiska naturalnego (zużycie surowców, problem zawrotu strumieni, dobór mediów technologicznych, uwzględnienie zagadnień korozji) na każdym etapie projektowania, • uzasadnienie głównych decyzji, • przygotowanie i przedstawienie wyników w logiczny sposób, • kreatywność/pomysłowość, przedsiębiorczość, zaradność, • jakość pomysłów, jakość szczegółów projektu, • sposób przedstawienia wyników w formie pisemnej i ustnej. Ocena każdego indywidualnego studenta będzie bazowała na ocenie raportów grupowych. W przypadku raportów grupowych członkowie zespołu projektowego będą zobowiązani do wzajemnego wskazania (po wspólnym uzgodnieniu) udziału pracy wykonanej przez każdego członka zespołu w pracy całego zespołu i będzie to podstawą oceny. Ustna prezentacja zespołu projektowego będzie stanowiła do 10% grupowej oceny finalnej. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ICHP_2A_B01-C08_W01 Student ma uporządkowaną, podbudowaną teoretycznie wiedzę dotyczącą podstaw projektowania systemów procesowych, między innymi elementami projektu procesowego, strategii projektowania. Ma wiedzę na temat zasad doboru procesów i ich parametrów pracy, heurystyk projektowych i programów symulacyjnych. | ICHP_2A_W02, ICHP_2A_W05 | T2A_W01, T2A_W03 | InzA2_W05 | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7 | M-1 | S-1, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ICHP_2A_B01-C08_U01 Student potrafi ocenić warunki, które muszą być spełnione do realizacji projektu obejmującego budowę lub modernizację instalacji i przeprowadzić proces projektowy. | ICHP_2A_U01, ICHP_2A_U07, ICHP_2A_U09 | T2A_U01, T2A_U07, T2A_U09 | InzA2_U02 | C-2 | T-W-1, T-P-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7 | M-2 | S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ICHP_2A_B01-C08_K01 Rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych. Przestrzega pracy zespołowej i potrafi odpowiednio określić priorytety służące do realizacji zadania - projektu procesowego. | ICHP_2A_K03, ICHP_2A_K04 | T2A_K03, T2A_K04 | — | C-2 | T-P-1 | M-2 | S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ICHP_2A_B01-C08_W01 Student ma uporządkowaną, podbudowaną teoretycznie wiedzę dotyczącą podstaw projektowania systemów procesowych, między innymi elementami projektu procesowego, strategii projektowania. Ma wiedzę na temat zasad doboru procesów i ich parametrów pracy, heurystyk projektowych i programów symulacyjnych. | 2,0 | Student nie opanował wiedzy podanej na wykładzie |
3,0 | Student opanował wiedzę podaną na wykładzie w podstawowym stopniu | |
3,5 | Student opanował wiedzę podaną na wykładzie i potrafi ją zinterpretować | |
4,0 | Student opanował wiedzę podaną na wykładzie i potrafi ją zastosować | |
4,5 | Student w pełni opanował wiedzę podaną na wykładzie, potrafi ją właściwie zinterpretować i w pełni wykorzystać praktycznie | |
5,0 | Student w pełni opanował wiedzę podaną na wykładzie, potrafi efektywnie analizować wyniki i przeprowadzić dyskusję |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ICHP_2A_B01-C08_U01 Student potrafi ocenić warunki, które muszą być spełnione do realizacji projektu obejmującego budowę lub modernizację instalacji i przeprowadzić proces projektowy. | 2,0 | |
3,0 | Podstawowe zaliczenie (40%) - kopie istniejących opisów instalacji, słaba próba stworzenia oryginalnego projektu. Niekompletne lub niewłaściwe bilanse masy i energii z dużym błędem niedokładności. Słaba ocena przyjętej metody. Znaczące braki. Niekompletne zrozumienie procesu. Brak umiejętności właściwej oceny stopnia dokładności instalacji. Słaba lub niejasna prezentacja. Wadliwe i niekompletne zdefiniowanie zadań projektowych. | |
3,5 | ||
4,0 | Średni poziom zaliczenia (55%) - kompletny podstawowy opis instalacji. Większość rzeczy została zrozumiana i opisana właściwie. Właściwe uzasadnienie wyboru instalacji. Obliczenia w większości wykonane poprawnie. Niezbyt wysoki poziom kreatywności lub innowacyjność, która nie została odzwierciedlona w dobry technicznym uzasadnieniu. Dobra prezentacja. Wszystkie zadania projektowe zostały omówione w ramach danego raportu i pokrywają daną tematykę. | |
4,5 | ||
5,0 | Wysoki poziom zaliczenia (70%) - kompletny opis instalacji. Większość rzeczy została zrozumiana i opisana właściwie. Dobre uzasadnienie wyboru instalacji. Jasna identyfikacja potencjalnych problemów. Ewidentna kreatywność w projekcie. Dobre techniczne uzasadnienie. Szczegółowy powiązanie pomiędzy koncepcją projektową a zadaniami/ problemami. Dobra prezentacja. Pełne sprawozdanie z omawianych zagadnień i tworzenie dalszych zadań w sposób innowacyjny. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ICHP_2A_B01-C08_K01 Rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych. Przestrzega pracy zespołowej i potrafi odpowiednio określić priorytety służące do realizacji zadania - projektu procesowego. | 2,0 | |
3,0 | Student w podstawowym stopniu rozumie potrzebę ciągłego kształcenia się i doskonalenia zawodowego | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Praca zbiorowa, L. Synoradzki, J. Wisialski, I. Fronczak, G. Padee, K. Jankowiak, A. Jerzak, S. Szymczak, Projektowanie procesów technologicznych. Od laboratorium do instalacji przemysłowej, Wydawnictwo Politechniki Warszawskiej, Warszawa, 2006
- J. Jeżowski, Wprowadzenie do projektowania systemów technologii chemicznej, Część 1, Teoria., Wydawnictwo Politechniki Rzeszowskiej, Rzeszów, 2002
- J. Jeżowski, A. Jeżowska, Wprowadzenie do projektowania systemów technologii chemicznej, Część 2, Przykłady obliczeń., Wydawnictwo Politechniki Rzeszowskiej, Rzeszów, 2002
- J. Dudczak, Podstawy analizy obiektów przemysłu chemicznego, Wydawnictwo Politechniki Szczecińskiej, Szczecin, 1987
- S. Kucharski, J. Głowiński, Podstawy obliczeń projektowych w technologii chemicznej, OWPWr, Wrocław, 2000
- K. Szmidt-Szałowski, Podstawy technologii chemicznej - bilanse procesów technologicznych, OWPW, Waszawa, 1997
- W. Kacperski, J. Kruszewski, R. Marcinkowski, Inżynieria systemów procesowych. Elementy syntezy procesów technologicznych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1992
Literatura dodatkowa
- K. F. Pawłow, P. G. Romankow, A. A. Noskow, Przykłady i zadania z zakresu aparatury i inżynierii chemicznej, WNT, Warszawa, 1988
- H. Konopko, Podstawy konstruowania urządzeń przemysłu chemicznego i spożywczego, Politechnika Białostocka, Białystok, 1998
- T. G. Filipczak, Tablice do obliczeń projektowo-konstrukcyjnych aparatury procesowej, Politechnika Opolska, Opole, 2004
- P. Wesołowski, Aparatura chemiczna i procesowa. Część 1. Wymienniki ciepła i masy, Politechnika Poznańska, Poznań, 2002
- J. Warych, Aparatura chemiczna i procesowa., Oficyna Wydawnictwo Politechniki Warszawskiej, Warzsawa, 1996
- A. Heim, B. Kochański, K. Pyć, E. Rzyski, Projektowanie aparatury chemicznej i spożywczej, Politechnika Łódzka, Łódź, 1993
- J. Pikoń, Aparatura chemiczna, PWN, Warszawa, 1983
- J. Pikoń, Podstawy konstrukcji aparatury chemicznej, Część I, Tworzywa konstrukcyjne, PWN, Warszawa, 1979
- J. Pikoń, Podstawy konstrukcji aparatury chemicznej, Część II, Elementy aparatury chemicznej, PWN, Warszawa, 1979
- A. Kubasiewicz, Wyparki. Konstrukcje i obliczanie, WNT, Warszawa, 1977
- S. Bretsznajder, Podstawy ogólne technologii chemicznej, WNT, Warszawa, 1973