Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Ochrona środowiska (S2)
specjalność: Technologie ochrony środowiska i materiałów ekologicznych

Sylabus przedmiotu Procesy membranowe:

Informacje podstawowe

Kierunek studiów Ochrona środowiska
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Procesy membranowe
Specjalność Procesy i aparaty w ochronie środowiska
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Elżbieta Gabruś <Elzbieta.Gabrus@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA2 15 1,00,41zaliczenie
wykładyW2 15 1,00,59zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1technologie ochrony środowiska

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawami teoretycznymi procesów membranowych.
C-2Zdobycie przez studenta umiejętności opisu transportu masy z uwzględnieniem podstawowych zjawisk charakteryzujących procesy membranowe.
C-3Zdobycie przez studenta umiejętności doboru odpowiedniego procesu membranowego, rodzaju modułu i membrany oraz parametrów procesowych do separacji składników roztworów ciekłych lub gazowych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Ćwiczenia audytoryjne obejmują obliczenia: rozmiaru i gęstości rozłożenia porów w membranie, wydajności i selektywności membran mikrofiltracyjnych i ultrafiltracyjnych w zależności parametrów operacyjnych; porównanie sposobów prowadzenia procesu membranowego (proces okresowy, ciągły, wieloetapowy); porównanie procesu ultrafiltracji i diafiltracji (okresowa i ciągła).15
15
wykłady
T-W-1Wprowadzenie do procesów membranowych. Podstawowe pojęcia (selektywność, wydajność, siła napędowa). Membrany: struktury, materiały, wytwarzanie, klasyfikacja. Rodzaje modułów membranowych: o przekroju kołowym (rurowy, kapilarny, z włókien kanalikowych) oraz płaskich (płytowo-ramowe, spiralne, poduszkowe). Opory transportu w modułach membranowych. Fouling membran: przyczyny powstawania i metody jego ograniczania. Polaryzacja stężeniowa i metody zapobiegania. Klasyfikacja procesów membranowych ze względu na siłę napędową. Ciśnieniowe procesy membranowe. Procesy membranowe, których siłą napędową jest różnica stężeń. Rodzaje dializy. Destylacja membranowa. Membrany ciekłe. Przykłady zastosowania technik membranowych.15
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach15
A-A-2Konsultacje2
A-A-3Przygotowanie do zaliczenia13
30
wykłady
A-W-1Uczestnictwo w zajęciach15
A-W-2Przygotowanie do zaliczenia12
A-W-3Konsultacje1
A-W-4Przeprowadzenie zaliczenia2
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metoda podająca: wykład informacyjny
M-2Metoda praktyczna: ćwiczenia przedmiotowe

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: zaliczenie pisemne

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
KOS_2A_C01-12_W01
Posiada wiedzę teoretyczną i praktyczną z dziedziny procesów membranowych i w oparciu o nią potrafi dobrać i/lub zweryfikować rozwiązanie techniczne
KOS_2A_W07, KOS_2A_W08T2A_W04, T2A_W05C-1, C-2, C-3T-W-1, T-A-1M-1, M-2S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
KOS_2A_C01-12_U01
Potrafi sformułować problem inżynierski oraz dobrać metody wspomagające jego rozwiązanie, potrafi wykonać badania doświadczalne i adekwatne obliczenia, a następnie przeprowadzić analizę wyników.
KOS_2A_U19, KOS_2A_U12, KOS_2A_U15, KOS_2A_U11T2A_U08, T2A_U09, T2A_U12, T2A_U16InzA2_U01, InzA2_U02C-2, C-3T-W-1, T-A-1M-1, M-2S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
KOS_2A_C01-12_K01
Potrafi zaproponować rozwiązanie dla danego problemu z dziedziny procesów membranowych
KOS_2A_K02, KOS_2A_K07T2A_K02, T2A_K06InzA2_K01C-3T-A-1, T-W-1M-1, M-2S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
KOS_2A_C01-12_W01
Posiada wiedzę teoretyczną i praktyczną z dziedziny procesów membranowych i w oparciu o nią potrafi dobrać i/lub zweryfikować rozwiązanie techniczne
2,0Student nie opanował wiedzy podanej na wykładzie
3,0Student opanował podstawy wiedzy podanej na wykładzie
3,5Student opanował wiedzę podaną na wykładzie, ale nie potrafi jej zinterpretować
4,0Student opanował wiedzę podaną na wykładzie i potrafi ją zinterpretować
4,5Student w pełni opanował wiedzę podaną na wykładzie, potrafi ją właściwie zinterpretować i wskazać zastosowanie poznanych technik membranowych w ochronie środowiska
5,0Student opanował wiedzę podaną na wykładzie, potrafi analizować przydatność poznanych technik membranowych dla potrzeb ochrony środowiska i potrafi przeprowadzić dyskusję.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
KOS_2A_C01-12_U01
Potrafi sformułować problem inżynierski oraz dobrać metody wspomagające jego rozwiązanie, potrafi wykonać badania doświadczalne i adekwatne obliczenia, a następnie przeprowadzić analizę wyników.
2,0Student nie potrafi zastosować wiedzy teoretycznej w zadaniach praktycznych
3,0Student potrafi zastosować wiedzę teoretyczną do rozwiązywania podstawowych zadań praktycznych
3,5Student potrafi poprawnie wykorzystać wiedzę teoretyczną do rozwiązywania zadań praktycznych
4,0Student potrafi zastosować całą zdobytą wiedzę do rozwiązywania zadań praktycznych w zakresie procesów membranowych
4,5Student potrafi znaleźć rozwiązanie zadań praktycznych w zakresie procesów membranowych i przeprowadzić dyskusję o uzyskanych wynikach
5,0Student potrafi zastosować praktycznie zdobytą wiedzę w zakresie procesów membranowych oraz przeprowadzić dyskusje wyników i uzasadnić dokonane wybory.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
KOS_2A_C01-12_K01
Potrafi zaproponować rozwiązanie dla danego problemu z dziedziny procesów membranowych
2,0Student nie spełnia kryteriów dla oceny 3,0
3,0Student wykazuje ograniczoną samodzielność przy poszukiwaniu rozwiązań zadanego problemu
3,5Student jest otwarty na poszukiwanie narzędzi do rozwiązywania zadanego problemu ale wymaga przy tym znacznej pomocy
4,0Student jest otwarty na poszukiwanie efektywnych narzędzi do rozwiązywania zadanego problemu ale wymaga przy tym odpowiedniego ukierunkowania
4,5Student jest kreatywny w poszukiwaniu właściwych narzędzi do rozwiązywania zadanego problemu i wymaga przy tym tylko nieznacznej pomocy
5,0Student jest w pełni samodzielny i kreatywny w doborze właściwych narzędzi do rozwiązywania zadanego problemu

Literatura podstawowa

  1. R. Rautenbach, Procesy membranowe, WNT, Warszawa, 1996
  2. M. Bodzek, J.Bohdziewicz, K. Konieczny, Techniki membranowe w ochronie środowiska, Wydawnictwo Politechniki Śląskiej, Gliwice, 1997
  3. M.Bodzek, K. Konieczny, Wykorzystanie procesów membranowych w uzdatnianiu wody, Projprzem-EKO, Bydgoszcz, 2005
  4. R. Gawroński, Procesy oczyszczania cieczy, Oficyna Wydawnicza PW, Warszawa, 1999

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Ćwiczenia audytoryjne obejmują obliczenia: rozmiaru i gęstości rozłożenia porów w membranie, wydajności i selektywności membran mikrofiltracyjnych i ultrafiltracyjnych w zależności parametrów operacyjnych; porównanie sposobów prowadzenia procesu membranowego (proces okresowy, ciągły, wieloetapowy); porównanie procesu ultrafiltracji i diafiltracji (okresowa i ciągła).15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do procesów membranowych. Podstawowe pojęcia (selektywność, wydajność, siła napędowa). Membrany: struktury, materiały, wytwarzanie, klasyfikacja. Rodzaje modułów membranowych: o przekroju kołowym (rurowy, kapilarny, z włókien kanalikowych) oraz płaskich (płytowo-ramowe, spiralne, poduszkowe). Opory transportu w modułach membranowych. Fouling membran: przyczyny powstawania i metody jego ograniczania. Polaryzacja stężeniowa i metody zapobiegania. Klasyfikacja procesów membranowych ze względu na siłę napędową. Ciśnieniowe procesy membranowe. Procesy membranowe, których siłą napędową jest różnica stężeń. Rodzaje dializy. Destylacja membranowa. Membrany ciekłe. Przykłady zastosowania technik membranowych.15
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach15
A-A-2Konsultacje2
A-A-3Przygotowanie do zaliczenia13
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach15
A-W-2Przygotowanie do zaliczenia12
A-W-3Konsultacje1
A-W-4Przeprowadzenie zaliczenia2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaKOS_2A_C01-12_W01Posiada wiedzę teoretyczną i praktyczną z dziedziny procesów membranowych i w oparciu o nią potrafi dobrać i/lub zweryfikować rozwiązanie techniczne
Odniesienie do efektów kształcenia dla kierunku studiówKOS_2A_W07ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami, takimi jak ocena oddziaływania na środowisko, minimalizowanie zagrożeń dla środowiska poprzez stosowanie najlepszych dostępnych technologii produkcji oraz ograniczanie i eliminowanie emisji do środowiska na etapie wytwarzania produktów oraz emisji odpadów z instalacji
KOS_2A_W08ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach z zakresu dyscyplin naukowych, takich jak: ochrona środowiska, inżynieria i technologia chemiczna oraz biotechnologia
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T2A_W05ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów i pokrewnych dyscyplin naukowych
Cel przedmiotuC-1Zapoznanie studentów z podstawami teoretycznymi procesów membranowych.
C-2Zdobycie przez studenta umiejętności opisu transportu masy z uwzględnieniem podstawowych zjawisk charakteryzujących procesy membranowe.
C-3Zdobycie przez studenta umiejętności doboru odpowiedniego procesu membranowego, rodzaju modułu i membrany oraz parametrów procesowych do separacji składników roztworów ciekłych lub gazowych.
Treści programoweT-W-1Wprowadzenie do procesów membranowych. Podstawowe pojęcia (selektywność, wydajność, siła napędowa). Membrany: struktury, materiały, wytwarzanie, klasyfikacja. Rodzaje modułów membranowych: o przekroju kołowym (rurowy, kapilarny, z włókien kanalikowych) oraz płaskich (płytowo-ramowe, spiralne, poduszkowe). Opory transportu w modułach membranowych. Fouling membran: przyczyny powstawania i metody jego ograniczania. Polaryzacja stężeniowa i metody zapobiegania. Klasyfikacja procesów membranowych ze względu na siłę napędową. Ciśnieniowe procesy membranowe. Procesy membranowe, których siłą napędową jest różnica stężeń. Rodzaje dializy. Destylacja membranowa. Membrany ciekłe. Przykłady zastosowania technik membranowych.
T-A-1Ćwiczenia audytoryjne obejmują obliczenia: rozmiaru i gęstości rozłożenia porów w membranie, wydajności i selektywności membran mikrofiltracyjnych i ultrafiltracyjnych w zależności parametrów operacyjnych; porównanie sposobów prowadzenia procesu membranowego (proces okresowy, ciągły, wieloetapowy); porównanie procesu ultrafiltracji i diafiltracji (okresowa i ciągła).
Metody nauczaniaM-1Metoda podająca: wykład informacyjny
M-2Metoda praktyczna: ćwiczenia przedmiotowe
Sposób ocenyS-1Ocena podsumowująca: zaliczenie pisemne
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował wiedzy podanej na wykładzie
3,0Student opanował podstawy wiedzy podanej na wykładzie
3,5Student opanował wiedzę podaną na wykładzie, ale nie potrafi jej zinterpretować
4,0Student opanował wiedzę podaną na wykładzie i potrafi ją zinterpretować
4,5Student w pełni opanował wiedzę podaną na wykładzie, potrafi ją właściwie zinterpretować i wskazać zastosowanie poznanych technik membranowych w ochronie środowiska
5,0Student opanował wiedzę podaną na wykładzie, potrafi analizować przydatność poznanych technik membranowych dla potrzeb ochrony środowiska i potrafi przeprowadzić dyskusję.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaKOS_2A_C01-12_U01Potrafi sformułować problem inżynierski oraz dobrać metody wspomagające jego rozwiązanie, potrafi wykonać badania doświadczalne i adekwatne obliczenia, a następnie przeprowadzić analizę wyników.
Odniesienie do efektów kształcenia dla kierunku studiówKOS_2A_U19potrafi zaproponować ulepszenia (usprawnienia) istniejących rozwiązań technicznych
KOS_2A_U12potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne oraz eksperymentalne
KOS_2A_U15potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów
KOS_2A_U11potrafi planować i przeprowadzać eksperymenty, pomiary i analizy, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
T2A_U12potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów
T2A_U16potrafi zaproponować ulepszenia (usprawnienia) istniejących rozwiązań technicznych
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA2_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-2Zdobycie przez studenta umiejętności opisu transportu masy z uwzględnieniem podstawowych zjawisk charakteryzujących procesy membranowe.
C-3Zdobycie przez studenta umiejętności doboru odpowiedniego procesu membranowego, rodzaju modułu i membrany oraz parametrów procesowych do separacji składników roztworów ciekłych lub gazowych.
Treści programoweT-W-1Wprowadzenie do procesów membranowych. Podstawowe pojęcia (selektywność, wydajność, siła napędowa). Membrany: struktury, materiały, wytwarzanie, klasyfikacja. Rodzaje modułów membranowych: o przekroju kołowym (rurowy, kapilarny, z włókien kanalikowych) oraz płaskich (płytowo-ramowe, spiralne, poduszkowe). Opory transportu w modułach membranowych. Fouling membran: przyczyny powstawania i metody jego ograniczania. Polaryzacja stężeniowa i metody zapobiegania. Klasyfikacja procesów membranowych ze względu na siłę napędową. Ciśnieniowe procesy membranowe. Procesy membranowe, których siłą napędową jest różnica stężeń. Rodzaje dializy. Destylacja membranowa. Membrany ciekłe. Przykłady zastosowania technik membranowych.
T-A-1Ćwiczenia audytoryjne obejmują obliczenia: rozmiaru i gęstości rozłożenia porów w membranie, wydajności i selektywności membran mikrofiltracyjnych i ultrafiltracyjnych w zależności parametrów operacyjnych; porównanie sposobów prowadzenia procesu membranowego (proces okresowy, ciągły, wieloetapowy); porównanie procesu ultrafiltracji i diafiltracji (okresowa i ciągła).
Metody nauczaniaM-1Metoda podająca: wykład informacyjny
M-2Metoda praktyczna: ćwiczenia przedmiotowe
Sposób ocenyS-1Ocena podsumowująca: zaliczenie pisemne
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi zastosować wiedzy teoretycznej w zadaniach praktycznych
3,0Student potrafi zastosować wiedzę teoretyczną do rozwiązywania podstawowych zadań praktycznych
3,5Student potrafi poprawnie wykorzystać wiedzę teoretyczną do rozwiązywania zadań praktycznych
4,0Student potrafi zastosować całą zdobytą wiedzę do rozwiązywania zadań praktycznych w zakresie procesów membranowych
4,5Student potrafi znaleźć rozwiązanie zadań praktycznych w zakresie procesów membranowych i przeprowadzić dyskusję o uzyskanych wynikach
5,0Student potrafi zastosować praktycznie zdobytą wiedzę w zakresie procesów membranowych oraz przeprowadzić dyskusje wyników i uzasadnić dokonane wybory.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaKOS_2A_C01-12_K01Potrafi zaproponować rozwiązanie dla danego problemu z dziedziny procesów membranowych
Odniesienie do efektów kształcenia dla kierunku studiówKOS_2A_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
KOS_2A_K07potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
T2A_K06potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-3Zdobycie przez studenta umiejętności doboru odpowiedniego procesu membranowego, rodzaju modułu i membrany oraz parametrów procesowych do separacji składników roztworów ciekłych lub gazowych.
Treści programoweT-A-1Ćwiczenia audytoryjne obejmują obliczenia: rozmiaru i gęstości rozłożenia porów w membranie, wydajności i selektywności membran mikrofiltracyjnych i ultrafiltracyjnych w zależności parametrów operacyjnych; porównanie sposobów prowadzenia procesu membranowego (proces okresowy, ciągły, wieloetapowy); porównanie procesu ultrafiltracji i diafiltracji (okresowa i ciągła).
T-W-1Wprowadzenie do procesów membranowych. Podstawowe pojęcia (selektywność, wydajność, siła napędowa). Membrany: struktury, materiały, wytwarzanie, klasyfikacja. Rodzaje modułów membranowych: o przekroju kołowym (rurowy, kapilarny, z włókien kanalikowych) oraz płaskich (płytowo-ramowe, spiralne, poduszkowe). Opory transportu w modułach membranowych. Fouling membran: przyczyny powstawania i metody jego ograniczania. Polaryzacja stężeniowa i metody zapobiegania. Klasyfikacja procesów membranowych ze względu na siłę napędową. Ciśnieniowe procesy membranowe. Procesy membranowe, których siłą napędową jest różnica stężeń. Rodzaje dializy. Destylacja membranowa. Membrany ciekłe. Przykłady zastosowania technik membranowych.
Metody nauczaniaM-1Metoda podająca: wykład informacyjny
M-2Metoda praktyczna: ćwiczenia przedmiotowe
Sposób ocenyS-1Ocena podsumowująca: zaliczenie pisemne
Kryteria ocenyOcenaKryterium oceny
2,0Student nie spełnia kryteriów dla oceny 3,0
3,0Student wykazuje ograniczoną samodzielność przy poszukiwaniu rozwiązań zadanego problemu
3,5Student jest otwarty na poszukiwanie narzędzi do rozwiązywania zadanego problemu ale wymaga przy tym znacznej pomocy
4,0Student jest otwarty na poszukiwanie efektywnych narzędzi do rozwiązywania zadanego problemu ale wymaga przy tym odpowiedniego ukierunkowania
4,5Student jest kreatywny w poszukiwaniu właściwych narzędzi do rozwiązywania zadanego problemu i wymaga przy tym tylko nieznacznej pomocy
5,0Student jest w pełni samodzielny i kreatywny w doborze właściwych narzędzi do rozwiązywania zadanego problemu