Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Architektury - Budownictwo (N1)
specjalność: Technologia i Organizacja Budownictwa

Sylabus przedmiotu Matematyka-2:

Informacje podstawowe

Kierunek studiów Budownictwo
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Matematyka-2
Specjalność przedmiot wspólny
Jednostka prowadząca Studium Matematyki
Nauczyciel odpowiedzialny Maria Szmuksta-Zawadzka <Maria.Szmuksta-Zawadzka@zut.edu.pl>
Inni nauczyciele Adam Bohonos <Adam.Bohonos@zut.edu.pl>
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA2 27 3,30,41zaliczenie
wykładyW2 27 2,70,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość matematyki z zakresu szkoły ponadgimnazjalnej i zagadnień z kursu Matematyka - 1.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie studentowi podstawowej wiedzy z zakresu analizy matematycznej, algebry liniowej i geometrii analitycznej w przestrzeni.
C-2Wykształcenie u studenta umiejętności posługiwania się podstawowymi metodami i algorytmami obliczeniowymi wykorzystywanymi w realizacji innych przedmiotów technicznych.
C-3Ukształtowanie u studenta świadomości konieczności uczenia się przez całe życie oraz organizowania pracy własnej i zespołu.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Pierwiastkowanie liczb zespolonych.1
T-A-2Rachunek macierzowy - działania na macierzach; wyznaczniki stopni 2, 3 i 4; macierz odwrotna i wykorzystanie jej do równań macierzowych.4
T-A-3Układy równań liniowych - układ Cramera; rozwiązywanie dowolnych układów równań liniowych metodą eliminacji Gaussa.4
T-A-4Całkowanie - metody przez podstawianie i przez części.3
T-A-5Całkowanie funkcji wymiernych i niektórych funkcji niewymiernych oraz trygonometrycznych.3
T-A-6Wyznaczanie całek oznaczonych oraz niewłaściwych. Zastosowania geometryczne całek.3
T-A-7Szkicowanie dziedzin i wykresów funkcji dwóch zmiennych.2
T-A-8Obliczanie pochodnych cząstkowych funkcji dwóch i trzech zmiennych.3
T-A-9Wyznaczanie ekstremum funkcji dwóch zmiennych.2
T-A-10Prosta i płaszczyzna w przestrzeni - sposoby ich zapisu.2
27
wykłady
T-W-1Całka nieoznaczona - bezpośrednie wzory na całkowanie; całkowanie przez podstawianie i przez części; całkowanie funkcji wymiernych i niektórych funkcji niewymiernych i trygonometrycznych.6
T-W-2Całka oznaczona Riemanna i całki niewłaściwe. Zastosowania geometryczne całek.4
T-W-3Elementy algebry wyższej: macierze, wyznaczniki i układy równań liniowych o współczynnikach rzeczywistych (układ Cramera; metoda eliminacji Gaussa); wartości i wektory własne macierzy.7
T-W-4Rachunek różniczkowy funkcji wielu zmiennych: granica i ciągłość funkcji; pochodne funkcji dwu i trzech zmiennych; różniczka zupełna; ekstrema funkcji dwóch zmiennych; ekstremum funkcji uwikłanej jednej zmiennej rzeczywistej.6
T-W-5Geometria analityczna w przestrzeni: rachunek wektorowy; płaszczyzny i proste w przestrzeni.4
27

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach.27
A-A-2Samodzielna praca studenta przy rozwiązywaniu zadań i analizie problemów.56
A-A-3Przygotowanie do dwóch kolokwium.12
A-A-4Konsultacje.4
99
wykłady
A-W-1Uczestnictwo w zajęciach.27
A-W-2Samodzielne analizowanie treści wykładu i studiowanie literatury.39
A-W-3Przygotowanie do egzaminu.10
A-W-4Konsultacje.2
A-W-5Egzamin.3
81

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-2Ocena podsumowująca: Ćwiczenia - zaliczenie na podstawie ocen z dwóch kolokwium i aktywności studenta na ćwiczeniach.
S-3Ocena podsumowująca: Egzamin pisemny: student otrzymuje zadania i polecenia teoretyczne z materiału przerabianego na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B_1A_B/11B_W01
Student zna podstawowe definicje, twierdzenia i algorytmy z zakresu analizy matematycznej ,algebry liniowej i geometrii analitycznej w przestrzeni omawiane w ramach wykładu.
B_1A_W01, B_1A_W14T1A_W01, T1A_W02, T1A_W07InzA_W02, InzA_W05C-1, C-2T-W-1, T-W-2, T-W-3, T-W-4, T-W-5M-1, M-2S-3

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B_1A_B/11B_U01
Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań oraz problemów matematycznych i inżynierskich.
B_1A_U05, B_1A_U14, B_1A_U22T1A_U01, T1A_U02, T1A_U05, T1A_U07, T1A_U08, T1A_U09, T1A_U15InzA_U01, InzA_U02, InzA_U07C-1, C-2T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7, T-A-8, T-A-9, T-A-10M-1, M-2S-1, S-2, S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B_1A_B/11B_K01
Rozumie potrzebę dalszego kształcenia oraz systematycznej i uczciwej pracy.
B_1A_K01, B_1A_K04T1A_K01, T1A_K03, T1A_K04C-3T-A-4, T-W-1, T-A-1, T-W-4, T-A-5, T-A-8, T-W-3, T-A-6, T-W-5, T-A-7, T-A-2, T-W-2, T-A-3, T-A-10, T-A-9M-1, M-2S-1, S-3, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
B_1A_B/11B_W01
Student zna podstawowe definicje, twierdzenia i algorytmy z zakresu analizy matematycznej ,algebry liniowej i geometrii analitycznej w przestrzeni omawiane w ramach wykładu.
2,0Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu.
3,0Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe.
3,5Student zna prawie wszystkie postawowe definicje i twierdzenia, niektóre z nich umie zilustrować przykładami, zna niektóre algorytmy obliczeniowe.
4,0Student zna większość: - definicji z przykładami, - twierdzeń z ich interpretacją geometryczną, - algorytmów obliczeniowych.
4,5Student zna prawie wszystkie: - definicje podstawowych pojęć wraz z przykładami ilustrującymi je i ich własności, - twierdzenia z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe.
5,0Student zna prawie wszystkie: - definicje omawianych pojęć wraz z przykładami ilustrującymi je i ich własności, - twiedzenia wraz z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe. Stosuje swą wiedzę w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
B_1A_B/11B_U01
Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań oraz problemów matematycznych i inżynierskich.
2,0Nie spełnia wymagań na ocenę 3,0.
3,0Student potrafi rozwiązywać proste, typowe zadania z zakresu treści programowych. Prezentowane rozwiązania zawierają błędy rachunkowe i brak im komentarza.
3,5Student potrafi rozwiązywać większość zadań (z błędami) z zakresu treści programowych analogicznych do tych prezentowanych na wykładach i ćwiczeniach; przy rozwiązywaniu zadań stosuje komentarz (zawierający usterki).
4,0Student potrafi rozwiązywać większość zadań z zakresu treści programowych stosując przy tym poprawny zapis, obliczenia i komentarz (z nielicznymi usterkami). Potrafi weryfikować uzyskane wyniki.
4,5Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując przejrzysty tok rozumowania, poprawne obliczenia i matematyczny język zapisu. Weryfikuje i interpretuje uzyskane wyniki. Prezentuje nowe (poza treściami programowymi) metody rozwiązań.
5,0Student potrafi rozwiązywać zadania z zakresu treści programowych stosując: - przejrzysty, poprawny komentarz i matematyczny język zapisu, - weryfikację i interpretację uzyskanego wyniku, - nowe (wykraczające poza treści programowe) metody rozwiązań. Potrafi prowadzić merytoryczną dyskusję problemową.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
B_1A_B/11B_K01
Rozumie potrzebę dalszego kształcenia oraz systematycznej i uczciwej pracy.
2,0Student nie uczęszcza na ćwiczenia lub na kolokwiach i egzaminach pracuje nieuczciwie.
3,0Student uczęszcza na ćwiczenia; przygotowuje się w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
3,5Student uczęszcza na ćwiczenia; przygotowuje się systematycznie w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie; wykazuje nieduży stopień zaangażowania w poznawanie nowych zagadnień i technik rachunkowych na ćwiczeniach.
4,0Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć; wykazuje duży stopień zaangażowania w poznawaniu nowych zagadnień i technik rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
4,5Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
5,0Studentuczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje bardzo wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; przejmuje rolę lidera przy zespołowym rozwiązywaniu zadań i problemów; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.

Literatura podstawowa

  1. Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna 1. Przykłady i zadania., Oficyna Wydawnicza GiS, Wrocław, 2007, Dostępne są różne wydania.
  2. Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna1. Definicje, twierdzenia i wzory., Oficyna wydawnicza GiS, Wrocław, 2007, Dostępne są różne wydania
  3. Teresa Jurlewicz, Zbigniew Skoczylas, Algebra i geometria analityczna. Definicje, twierdzenia, wzory., Oficyna wydawnicza GiS, Wrocław, 2008, Dostępne są różne wydania.
  4. Teresa Jurlewicz, Zbigniew Skoczylas, Algebra i geometria analityczna.Przykłady i zadania., Oficyna wydawnicza GiS, Wrocław, 2008, 14, Dostępne sa różne wydania
  5. Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna2. Definicje, twierdzenia i wzory., Oficyna wydawnicza GiS, Wrocław, 2005, 13, Dostępne są różne wydania.
  6. Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna 2. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2005, 13, Dostępne są różne wydania.

Literatura dodatkowa

  1. Dobrowolska Krystyna, Matematyka dla studiów technicznych dla pracujących, t.1, PWN, Warszawa, 1980
  2. Dobrowolska Krystyna, Matematyka dla studiów technicznych dla pracujących, t.2, PWN, Warszawa, 1983
  3. Otto E., Matematyka dla wydziałów budowlanych i mechanicznych, tom I, PWN, Warszawa, 1978, 4
  4. Otto E., Matematyka dla wydziałów budowlanych i mechanicznych, tom II, PWN, Warszawa, 1980

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Pierwiastkowanie liczb zespolonych.1
T-A-2Rachunek macierzowy - działania na macierzach; wyznaczniki stopni 2, 3 i 4; macierz odwrotna i wykorzystanie jej do równań macierzowych.4
T-A-3Układy równań liniowych - układ Cramera; rozwiązywanie dowolnych układów równań liniowych metodą eliminacji Gaussa.4
T-A-4Całkowanie - metody przez podstawianie i przez części.3
T-A-5Całkowanie funkcji wymiernych i niektórych funkcji niewymiernych oraz trygonometrycznych.3
T-A-6Wyznaczanie całek oznaczonych oraz niewłaściwych. Zastosowania geometryczne całek.3
T-A-7Szkicowanie dziedzin i wykresów funkcji dwóch zmiennych.2
T-A-8Obliczanie pochodnych cząstkowych funkcji dwóch i trzech zmiennych.3
T-A-9Wyznaczanie ekstremum funkcji dwóch zmiennych.2
T-A-10Prosta i płaszczyzna w przestrzeni - sposoby ich zapisu.2
27

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Całka nieoznaczona - bezpośrednie wzory na całkowanie; całkowanie przez podstawianie i przez części; całkowanie funkcji wymiernych i niektórych funkcji niewymiernych i trygonometrycznych.6
T-W-2Całka oznaczona Riemanna i całki niewłaściwe. Zastosowania geometryczne całek.4
T-W-3Elementy algebry wyższej: macierze, wyznaczniki i układy równań liniowych o współczynnikach rzeczywistych (układ Cramera; metoda eliminacji Gaussa); wartości i wektory własne macierzy.7
T-W-4Rachunek różniczkowy funkcji wielu zmiennych: granica i ciągłość funkcji; pochodne funkcji dwu i trzech zmiennych; różniczka zupełna; ekstrema funkcji dwóch zmiennych; ekstremum funkcji uwikłanej jednej zmiennej rzeczywistej.6
T-W-5Geometria analityczna w przestrzeni: rachunek wektorowy; płaszczyzny i proste w przestrzeni.4
27

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach.27
A-A-2Samodzielna praca studenta przy rozwiązywaniu zadań i analizie problemów.56
A-A-3Przygotowanie do dwóch kolokwium.12
A-A-4Konsultacje.4
99
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach.27
A-W-2Samodzielne analizowanie treści wykładu i studiowanie literatury.39
A-W-3Przygotowanie do egzaminu.10
A-W-4Konsultacje.2
A-W-5Egzamin.3
81
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB_1A_B/11B_W01Student zna podstawowe definicje, twierdzenia i algorytmy z zakresu analizy matematycznej ,algebry liniowej i geometrii analitycznej w przestrzeni omawiane w ramach wykładu.
Odniesienie do efektów kształcenia dla kierunku studiówB_1A_W01Ma wiedzę z wybranych działów matematyki, fizyki, chemii i innych obszarów właściwych dla kierunku budownictwo, niezbędną do formułowania oraz rozwiązywania prostych zadań z zakresu budownictwa
B_1A_W14Zna wybrane metody analityczne i programy komputerowe wspomagające projektowanie konstrukcji oraz organizację robót budowlanych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
InzA_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-1Przekazanie studentowi podstawowej wiedzy z zakresu analizy matematycznej, algebry liniowej i geometrii analitycznej w przestrzeni.
C-2Wykształcenie u studenta umiejętności posługiwania się podstawowymi metodami i algorytmami obliczeniowymi wykorzystywanymi w realizacji innych przedmiotów technicznych.
Treści programoweT-W-1Całka nieoznaczona - bezpośrednie wzory na całkowanie; całkowanie przez podstawianie i przez części; całkowanie funkcji wymiernych i niektórych funkcji niewymiernych i trygonometrycznych.
T-W-2Całka oznaczona Riemanna i całki niewłaściwe. Zastosowania geometryczne całek.
T-W-3Elementy algebry wyższej: macierze, wyznaczniki i układy równań liniowych o współczynnikach rzeczywistych (układ Cramera; metoda eliminacji Gaussa); wartości i wektory własne macierzy.
T-W-4Rachunek różniczkowy funkcji wielu zmiennych: granica i ciągłość funkcji; pochodne funkcji dwu i trzech zmiennych; różniczka zupełna; ekstrema funkcji dwóch zmiennych; ekstremum funkcji uwikłanej jednej zmiennej rzeczywistej.
T-W-5Geometria analityczna w przestrzeni: rachunek wektorowy; płaszczyzny i proste w przestrzeni.
Metody nauczaniaM-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.
Sposób ocenyS-3Ocena podsumowująca: Egzamin pisemny: student otrzymuje zadania i polecenia teoretyczne z materiału przerabianego na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu.
3,0Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe.
3,5Student zna prawie wszystkie postawowe definicje i twierdzenia, niektóre z nich umie zilustrować przykładami, zna niektóre algorytmy obliczeniowe.
4,0Student zna większość: - definicji z przykładami, - twierdzeń z ich interpretacją geometryczną, - algorytmów obliczeniowych.
4,5Student zna prawie wszystkie: - definicje podstawowych pojęć wraz z przykładami ilustrującymi je i ich własności, - twierdzenia z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe.
5,0Student zna prawie wszystkie: - definicje omawianych pojęć wraz z przykładami ilustrującymi je i ich własności, - twiedzenia wraz z ich interpretacją geometryczną lub dowodem, - algorytmy obliczeniowe. Stosuje swą wiedzę w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB_1A_B/11B_U01Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań oraz problemów matematycznych i inżynierskich.
Odniesienie do efektów kształcenia dla kierunku studiówB_1A_U05Potrafi poprawnie wybrać narzędzia (analityczne bądź numeryczne) do rozwiązywania problemów analizy, projektowania, wykonawstwa elementów konstrukcji oraz obiektów budowlanych
B_1A_U14Potrafi korzystać z technologii informacyjnych, zasobów Internetu oraz innych źródeł do wyszukiwania informacji ogólnych, komunikacji oraz poszukiwania oprogramowania wspomagającego pracę projektanta i organizatora robót budowlanych
B_1A_U22Ma umiejętność samokształcenia się
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach
T1A_U05ma umiejętność samokształcenia się
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Cel przedmiotuC-1Przekazanie studentowi podstawowej wiedzy z zakresu analizy matematycznej, algebry liniowej i geometrii analitycznej w przestrzeni.
C-2Wykształcenie u studenta umiejętności posługiwania się podstawowymi metodami i algorytmami obliczeniowymi wykorzystywanymi w realizacji innych przedmiotów technicznych.
Treści programoweT-A-1Pierwiastkowanie liczb zespolonych.
T-A-2Rachunek macierzowy - działania na macierzach; wyznaczniki stopni 2, 3 i 4; macierz odwrotna i wykorzystanie jej do równań macierzowych.
T-A-3Układy równań liniowych - układ Cramera; rozwiązywanie dowolnych układów równań liniowych metodą eliminacji Gaussa.
T-A-4Całkowanie - metody przez podstawianie i przez części.
T-A-5Całkowanie funkcji wymiernych i niektórych funkcji niewymiernych oraz trygonometrycznych.
T-A-6Wyznaczanie całek oznaczonych oraz niewłaściwych. Zastosowania geometryczne całek.
T-A-7Szkicowanie dziedzin i wykresów funkcji dwóch zmiennych.
T-A-8Obliczanie pochodnych cząstkowych funkcji dwóch i trzech zmiennych.
T-A-9Wyznaczanie ekstremum funkcji dwóch zmiennych.
T-A-10Prosta i płaszczyzna w przestrzeni - sposoby ich zapisu.
Metody nauczaniaM-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-2Ocena podsumowująca: Ćwiczenia - zaliczenie na podstawie ocen z dwóch kolokwium i aktywności studenta na ćwiczeniach.
S-3Ocena podsumowująca: Egzamin pisemny: student otrzymuje zadania i polecenia teoretyczne z materiału przerabianego na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Nie spełnia wymagań na ocenę 3,0.
3,0Student potrafi rozwiązywać proste, typowe zadania z zakresu treści programowych. Prezentowane rozwiązania zawierają błędy rachunkowe i brak im komentarza.
3,5Student potrafi rozwiązywać większość zadań (z błędami) z zakresu treści programowych analogicznych do tych prezentowanych na wykładach i ćwiczeniach; przy rozwiązywaniu zadań stosuje komentarz (zawierający usterki).
4,0Student potrafi rozwiązywać większość zadań z zakresu treści programowych stosując przy tym poprawny zapis, obliczenia i komentarz (z nielicznymi usterkami). Potrafi weryfikować uzyskane wyniki.
4,5Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując przejrzysty tok rozumowania, poprawne obliczenia i matematyczny język zapisu. Weryfikuje i interpretuje uzyskane wyniki. Prezentuje nowe (poza treściami programowymi) metody rozwiązań.
5,0Student potrafi rozwiązywać zadania z zakresu treści programowych stosując: - przejrzysty, poprawny komentarz i matematyczny język zapisu, - weryfikację i interpretację uzyskanego wyniku, - nowe (wykraczające poza treści programowe) metody rozwiązań. Potrafi prowadzić merytoryczną dyskusję problemową.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB_1A_B/11B_K01Rozumie potrzebę dalszego kształcenia oraz systematycznej i uczciwej pracy.
Odniesienie do efektów kształcenia dla kierunku studiówB_1A_K01Rozumie potrzebę uczenia się przez całe życie. Potrafi inspirować i organizować proces uczenia się innych osób
B_1A_K04Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Cel przedmiotuC-3Ukształtowanie u studenta świadomości konieczności uczenia się przez całe życie oraz organizowania pracy własnej i zespołu.
Treści programoweT-A-4Całkowanie - metody przez podstawianie i przez części.
T-W-1Całka nieoznaczona - bezpośrednie wzory na całkowanie; całkowanie przez podstawianie i przez części; całkowanie funkcji wymiernych i niektórych funkcji niewymiernych i trygonometrycznych.
T-A-1Pierwiastkowanie liczb zespolonych.
T-W-4Rachunek różniczkowy funkcji wielu zmiennych: granica i ciągłość funkcji; pochodne funkcji dwu i trzech zmiennych; różniczka zupełna; ekstrema funkcji dwóch zmiennych; ekstremum funkcji uwikłanej jednej zmiennej rzeczywistej.
T-A-5Całkowanie funkcji wymiernych i niektórych funkcji niewymiernych oraz trygonometrycznych.
T-A-8Obliczanie pochodnych cząstkowych funkcji dwóch i trzech zmiennych.
T-W-3Elementy algebry wyższej: macierze, wyznaczniki i układy równań liniowych o współczynnikach rzeczywistych (układ Cramera; metoda eliminacji Gaussa); wartości i wektory własne macierzy.
T-A-6Wyznaczanie całek oznaczonych oraz niewłaściwych. Zastosowania geometryczne całek.
T-W-5Geometria analityczna w przestrzeni: rachunek wektorowy; płaszczyzny i proste w przestrzeni.
T-A-7Szkicowanie dziedzin i wykresów funkcji dwóch zmiennych.
T-A-2Rachunek macierzowy - działania na macierzach; wyznaczniki stopni 2, 3 i 4; macierz odwrotna i wykorzystanie jej do równań macierzowych.
T-W-2Całka oznaczona Riemanna i całki niewłaściwe. Zastosowania geometryczne całek.
T-A-3Układy równań liniowych - układ Cramera; rozwiązywanie dowolnych układów równań liniowych metodą eliminacji Gaussa.
T-A-10Prosta i płaszczyzna w przestrzeni - sposoby ich zapisu.
T-A-9Wyznaczanie ekstremum funkcji dwóch zmiennych.
Metody nauczaniaM-1Wykład informacyjny z wyjaśnieniami i przykładami.
M-2Ćwiczenia przedmiotowe - rozwiązywanie zadań rachunkowych i problemowych dotyczących treści wykładów.
Sposób ocenyS-1Ocena formująca: Ocena aktywności studenta na ćwiczeniach.
S-3Ocena podsumowująca: Egzamin pisemny: student otrzymuje zadania i polecenia teoretyczne z materiału przerabianego na wykładach. Student otrzymuje ocenę pozytywną, jeśli uzyskał 50% i więcej możliwych do otrzymania punktów.
S-2Ocena podsumowująca: Ćwiczenia - zaliczenie na podstawie ocen z dwóch kolokwium i aktywności studenta na ćwiczeniach.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie uczęszcza na ćwiczenia lub na kolokwiach i egzaminach pracuje nieuczciwie.
3,0Student uczęszcza na ćwiczenia; przygotowuje się w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
3,5Student uczęszcza na ćwiczenia; przygotowuje się systematycznie w stopniu podstawowym do zajęć; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie; wykazuje nieduży stopień zaangażowania w poznawanie nowych zagadnień i technik rachunkowych na ćwiczeniach.
4,0Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć; wykazuje duży stopień zaangażowania w poznawaniu nowych zagadnień i technik rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
4,5Student uczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.
5,0Studentuczęszcza na zajęcia; przygotowuje się systematycznie do zajęć poszerzając swoją wiedzę o nowe treści z literatury; wykazuje bardzo wysoki stopień zaangażowania w poznawaniu nowych zagadnień i metod rachunkowych na ćwiczeniach; przejmuje rolę lidera przy zespołowym rozwiązywaniu zadań i problemów; na kolokwiach i egzaminach pracuje samodzielnie i uczciwie.