Wydział Budownictwa i Architektury - Inżynieria środowiska (N2)
specjalność: Ogrzewnictwo i wentylacja
Sylabus przedmiotu Alternatywne źródła energii:
Informacje podstawowe
Kierunek studiów | Inżynieria środowiska | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Alternatywne źródła energii | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Techniki Cieplnej | ||
Nauczyciel odpowiedzialny | Aleksander Stachel <Aleksander.Stachel@zut.edu.pl> | ||
Inni nauczyciele | Radomir Kaczmarek <Radomir.Kaczmarek@zut.edu.pl>, Tomasz Kujawa <Tomasz.Kujawa@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość podstaw fizyki i termodynamiki. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studenta z tematyką możliwości pozyskiwania i wykorzystania energii z tzw. źródeł odnawialnych. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | W ramach zajęć laboratoryjnych studenci wykonują ćwiczenia będące ilustracją tematyki prezentowanej w trakcie wykładów (badanie: panelu PV, pompy ciepła, kolektora słonecznego, mikrosiłowni wiatrowej, itp). | 9 |
9 | ||
wykłady | ||
T-W-1 | - Klasyfikacja i zasoby energii odnawialnej i niekonwencjonalnej. - Podstawy teoretyczne wykorzystania energii wody: siłownie wodne, elektrownie pompowe. - Energia mórz i oceanów: sposoby wykorzystania, przykładowe instalacje. - Energia promieniowania słonecznego: konwersja fototermiczna i fotowoltaiczna. - Energia geotermiczna i jej zasoby. Sposoby pozyskiwania i wykorzystania. - Energia wiatru: sposoby pozyskiwania i przykłady wykorzystania. - Biomasa: technologie i kierunki wykorzystania w energetyce. - Paliwa alternatywne z odpadów. - Wykorzystanie tzw. energii odpadowej w przemyśle. - Technologie konwersji paliw stałych do paliw gazowych i ciekłych. - Przyszłościowe źródła energii. Podstawy energetyki jądrowej. | 9 |
9 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach | 9 |
A-L-2 | Praca własna - opracowanie sprawozdań i przygotowanie do zaliczenia ćwiczeń. | 21 |
30 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach | 9 |
A-W-2 | Praca własna - opracowanie zadanego tematu / problemu dot. OZE. | 21 |
A-W-3 | Przygotowanie do egzaminu. | 30 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Metoda podająca: wykład informacyjny. Metoda problemowa: wykład problemowy. |
M-2 | Metoda praktyczna: ćwiczenia laboratoryjne. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Egzamin obejmujący tematykę wykładów (pisemny / ustny). Punktowy system oceny wiedzy i umiejętności. |
S-2 | Ocena formująca: Zrealizowanie i zaliczenie wszystkich ćwiczeń laboratoryjnych przewidzianych planem zajęć. Ocena końcowa jest średnią arytmetyczną z ocen poszczególnych ćwiczeń. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_2A_null_W01 W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii ze źródeł odnawialnych oraz scharakteryzować poszczególne jej rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania OZE oraz możliwości i celowość ich użycia. Powinien być w stanie określić znaczenie odnawialnych źródeł energii w kontekscie problemów energetycznych i środowiskowych. Powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii. | IS_2A_W03, IS_2A_W06, IS_2A_W11 | T2A_W03, T2A_W04, T2A_W06, T2A_W07 | InzA2_W01, InzA2_W02, InzA2_W05 | C-1 | T-L-1, T-W-1 | M-1, M-2 | S-1, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_2A_null_U01 W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwości wykorzystania (w danych warunkach) różnych rodzajów OZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania oraz określić oddziaływanie środowiskowe OZE. | IS_2A_U13, IS_2A_U16 | T2A_U12, T2A_U18 | InzA2_U01 | C-1 | T-L-1, T-W-1 | M-1, M-2 | S-1, S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_2A_null_K01 Student ma zdolność stosowania zdobytej wiedzy i nabytych umiejętności w dalszych etapach kształcenia się oraz w przyszłej pracy zawodowej. | IS_2A_K03, IS_2A_K04, IS_2A_K06 | T2A_K01, T2A_K02 | InzA2_K01 | C-1 | T-L-1, T-W-1 | M-1, M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IS_2A_null_W01 W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii ze źródeł odnawialnych oraz scharakteryzować poszczególne jej rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania OZE oraz możliwości i celowość ich użycia. Powinien być w stanie określić znaczenie odnawialnych źródeł energii w kontekscie problemów energetycznych i środowiskowych. Powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii. | 2,0 | System punktowy oceny: Student uzyskał poniżej 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. |
3,0 | System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
3,5 | System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
4,0 | System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
4,5 | System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
5,0 | System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IS_2A_null_U01 W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwości wykorzystania (w danych warunkach) różnych rodzajów OZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania oraz określić oddziaływanie środowiskowe OZE. | 2,0 | System punktowy oceny: Student uzyskał poniżej 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. |
3,0 | System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
3,5 | System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
4,0 | System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
4,5 | System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
5,0 | System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IS_2A_null_K01 Student ma zdolność stosowania zdobytej wiedzy i nabytych umiejętności w dalszych etapach kształcenia się oraz w przyszłej pracy zawodowej. | 2,0 | System punktowy oceny: Student uzyskał poniżej 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. |
3,0 | System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
3,5 | System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
4,0 | System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
4,5 | System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. | |
5,0 | System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia. |
Literatura podstawowa
- Cieśliński J., Mikielewicz J., Niekonwencjonalne źródła energii, Wyd. Politechniki Gdańskiej, Gdańsk, 1996
- Mikielewicz J., Cieśiński J., Niekonwencjonalne urządzenia i systemy konwersji energii, Ossolineum, Wrocław, 1999
- Nowak W., Stachel A., Stan i perspektywy wykorzystania odnawialnych źródeł energii w Polsce, Wyd. Politechniki Szczecińskiej, Szczecin, 2004
- Lewandowski W.M., Proekologiczne odnawialne źródła energii, WNT, Wydawnictwo Naukowo-Techniczne, Warszawa, 2007
- Nowak W., Stachel A., Borsukiewicz-Gozdur A., Zastosowania odnawialnych źródeł energii, Wyd. Politechniki Szczecińskiej, Szczecin, 2008
Literatura dodatkowa
- Nowak W., Sobański R., Kabat M., Kujawa T., Systemy pozyskiwania i wykorzystania energii geotermicznej, Wyd. Politechniki Szczecińskiej, Szczecin, 2000
- Gronowicz J., Niekonwencjonalne źródła energii, Radom - Poznań, 2008
- Praca zbiorowa, Odnawialne źródła energii. Poradnik, Tarbonus sp. z o.o., Kraków - Tarnobrzeg, 2008
- Instrukcje do ćwiczeń laboratoryjnych z OZE, Opracowanie własne KTC, 2010