Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | AR_1A_C10_U01 | Student potrafi określić zadania identyfikacji przemysłowych obiektów dynamicznych i dokonać ich zamodelowania w środowisku MATLAB/Simulink. Potrafi wybrać odpowiednią klasę liniowych modeli dynamicznych oraz dokonać uproszczeń dla typowych modeli matematycznych obiektów sterowania. Potrafi zaplanować i przeprowadzić prosty eksperyment identyfikacyjny na rzeczywistym obiekcie z uwzględnieniem występujących na nim ograniczeń. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | AR_1A_U18 | Potrafi wyznaczać typowe modele obiektów sterowania oraz analizować ich właściwości. |
---|
Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | T1A_U08 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
---|
T1A_U09 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
T1A_U15 | potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia |
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | InzA_U01 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
---|
InzA_U02 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
InzA_U07 | potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia |
Cel przedmiotu | C-1 | Poznanie sposobów tworzenia matematycznych modeli procesów dynamicznych na podstawie praw fizyko-chemicznych rządzących procesem. |
---|
C-2 | Poznanie metod modelowania złożonych procesów dynamicznych z użyciem nowoczesnej techniki cyfrowej. |
C-3 | Poznanie sposobów upraszczania złożonych modeli matematycznych obiektu: linearyzacja równań stanu w dziedzinie czasowej i wyznaczanie modeli transmitancyjnych, upraszczanie i redukcja rzędu modeli transmitancyjnych. |
C-4 | Poznanie inżynierskich metod identyfikacji parametrów typowych modeli liniowych na podstawie charakterystyk czasowych i częstotliwościowych obiektu pomierzonych w eksperymencie czynnym. |
C-5 | Poznanie algorytmów identyfikacji parametrów dyskretnych modeli obiektu z użyciem metod optymalizacji statycznej. |
Treści programowe | T-L-1 | Wyprowadzenie równań stanu dla wybranego (rzeczywistego) obiektu sterowania. |
---|
T-L-2 | Zamodelowanie opracowanego (nieliniowego) modelu obiektu w środowisku MATLAB/Simulink |
T-L-3 | Pomiar charakterystyk czasowych (odpowiedzi na skok) i/lub charakterystyk częstotliwościowych na (nieliniowym) modelu obiektu w eksperymencie czynnym dla wybranego punktu pracy obiektu. Ustalenie klas liniowych modeli obiektu i wyznaczenie parametrów tych modeli metodami inżynierskimi. |
T-L-4 | Linearyzacja nieliniowego opisu dla wybranego uprzednio punktu pracy obiektu i analityczne wyznaczenie macierzy transmitancji dla modelu liniowego. Porównanie otrzymanych transmitancji z transmitancjami wyznaczonymi w eksperymencie czynnym. |
T-L-5 | Dobór kroku próbkowania i dyskretyzacja modelu liniowego |
T-L-6 | Implementacja algorytmu aproksymacji obiektu modelem dyskretnym metodą minimalizacji (ważonej) sumy kwadratów błędów (NMK), z użyciem wybranej gradientowej metody optymalizacji statycznej. |
Metody nauczania | M-1 | Wykład informacyjny |
---|
M-3 | Ćwiczenia laboratoryjne z użyciem komputera |
Sposób oceny | S-1 | Ocena podsumowująca: Ocena wystawiana po zakończeniu cyklu ćwiczeń laboratoryjnych na podstawie ocen cząstkowych uzyskanych ze złożonych sprawozdań oraz aktywności i pracy poszczególnych członków zespołu podczas realizacji ćwiczeń. |
---|
S-2 | Ocena podsumowująca: Ocena wystawiana na podstawie egzaminu pisemnego i ustnego. |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | |
3,0 | Student potrafi określić zadania identyfikacji przemysłowych obiektów dynamicznych i dokonać ich zamodelowania w środowisku MATLAB/Simulink. Potrafi wybrać odpowiednią klasę liniowych modeli dynamicznych oraz dokonać uproszczeń dla typowych modeli matematycznych obiektów sterowania. Potrafi zaplanować i przeprowadzić prosty eksperyment identyfikacyjny na rzeczywistym obiekcie z uwzględnieniem występujących na nim ograniczeń. |
3,5 | |
4,0 | |
4,5 | |
5,0 | |