Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Zarządzanie i inżynieria produkcji (N1)
specjalność: inżynieria jakości i zarządzanie

Sylabus przedmiotu Modelowanie systemów - Przedmiot obieralny IV:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Modelowanie systemów - Przedmiot obieralny IV
Specjalność e- technologie w produkcji i zarządzaniu
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Piotr Piela <Piotr.Piela@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 4 Grupa obieralna 3

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL6 6 0,90,40zaliczenie
wykładyW6 8 1,10,60zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza z zakresu algebry i analizy matematycznej oraz fizyki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Ukształtowanie umiejętności tworzenia prostych modeli komputerowych obiektów rzeczywistych.
C-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.
C-3Zapoznanie studentów z zasadami tworzenia modeli matematycznych systemów różnego typu.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie - higiena pracy z komputerem, określenie zasad zaliczania i oceny.1
T-L-2Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.2
T-L-3Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.1
T-L-4Modelowanie prostych systemów dynamicznych.2
6
wykłady
T-W-1Podstawowe określenia i definicje: system i jego własności, modele i ich rodzaje, symulacja komputerowa, proces modelowania1
T-W-2Kategorie modeli matematycznych: definicje, własności i przykłady1
T-W-3Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne1
T-W-4Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne. Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).1
T-W-5Systemy liniowe: metody linearyzacji, założenia i uproszczenia w procesie modelowania. Dynamiczne modele liniowe w przestrzeni stanów. Linearyzacja modeli za pomoca rozkładu w szereg Taylora. Linearyzacja modeli z wykorzystaniem metod identyfikacji.1
T-W-6Model komputerowy. Wybór algorytmów obliczeniowych. Wybór oprogramowania.1
T-W-7Błędy obliczeń i ich rodzaje. Stabilność i uwarunkowanie algorytmów numerycznych.1
T-W-8Weryfikacja, walidacja i kalibracja modelu. Sposoby przedstawiania działania modelu. Wizualizacja.0
T-W-9Zaliczenie wykładu1
8

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach6
A-L-2Przygotowanie do zaliczenia (praca własna studenta)20
26
wykłady
A-W-1Uczestnictwo w zajęciach8
A-W-2Uczestnictwo w konsultacjach do wykładu1
A-W-3Przygotowanie do zaliczenia (praca własna studenta)20
29

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia laboratoryjne - samodzelna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Wykład - egzamin pisemny (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% maksymalnej liczby punktów
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_O/04-4_W01
W wyniku przeprowadzonych zajęc student powinien być w stanie wyliczać i opisać poszczególne etapy tworzenia modeli matematycznych.
ZIP_1A_W01, ZIP_1A_W04T1A_W01, T1A_W02, T1A_W03, T1A_W07InzA_W02C-1, C-3T-W-1, T-W-2, T-W-3, T-W-4M-1S-1
ZIP_1A_O/04-4_W02
W wyniku przeprowadzonych zajęc student powinien być w stanie dobierać odpowiednie algorytmy numeryczne w procesie kodowania modelu
ZIP_1A_W01, ZIP_1A_W03T1A_W01, T1A_W02, T1A_W03, T1A_W07InzA_W02, InzA_W05C-2, C-3T-W-3, T-W-4, T-W-6, T-W-7M-1, M-2S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_O/04-4_U01
W wyniku przeprowadzonych zajęć student powinien umieć posłużyć się przykładowym pakietem symulacynym w celu przeprowadzenia procesu modelowania.
ZIP_1A_U18, ZIP_1A_U22T1A_U08, T1A_U09InzA_U01, InzA_U02C-1T-L-2, T-L-3, T-L-4M-2S-2
ZIP_1A_O/04-4_U02
W wyniku przeprowadzonych zajęć student powinien umieć tworzyć modele komputerowe prostych systemów oraz opracowywać wizualizację działania tych modeli.
ZIP_1A_U18, ZIP_1A_U22T1A_U08, T1A_U09InzA_U01, InzA_U02C-1, C-2T-L-2, T-L-3, T-L-4M-2S-2
ZIP_1A_O/04-4_U03
W wyniku przeprowadzonych zajęć student powienien umieć analizować wyniki otrzymane w procesie modelowania.
ZIP_1A_U18T1A_U08InzA_U01C-2T-L-2, T-L-4M-2S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_O/04-4_K01
W trakcie przeprowadzonych zajęć student będzie reprezentował aktywną postawę w samokształceniu.
ZIP_1A_K01T1A_K01C-1, C-2, C-3T-L-2, T-L-3, T-L-4M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_O/04-4_W01
W wyniku przeprowadzonych zajęc student powinien być w stanie wyliczać i opisać poszczególne etapy tworzenia modeli matematycznych.
2,0Student nie potrafi wyliczyć i opisać poszczególnych etapów tworzenia modeli matematycznych.
3,0Student potrafi wyliczyć podstawowe etapy tworzenia modeli matematycznych.
3,5Student potrafi wyliczyć i opisać podstawowe etapy tworzenia modeli matematycznych.
4,0Student potrafi wyliczyć i szczególowo opisać poszczególne etapy tworzenia modeli matematycznych.
4,5Student potrafi wyliczyć i szczególowo opisać etapy tworzenia modeli matematycznych z zachowaniem kolejności ich wystepowania.
5,0Student potrafi przedstawić algorytm procesu modelowania systemów i szczególowo opisać poszczególne jego etapy.
ZIP_1A_O/04-4_W02
W wyniku przeprowadzonych zajęc student powinien być w stanie dobierać odpowiednie algorytmy numeryczne w procesie kodowania modelu
2,0Student nie umie dobrać algorytmów numerycznych do rozwiązywania zadań modelowania.
3,0Student umie zaproponować najprostsze algorytmy numeryczne do rozwiązania wybranych zagadnień modelowania systemów.
3,5Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień modelowania systemów.
4,0Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień modelowania systemów oraz uzasadnić swój wybór.
4,5Student umie zaproponować algorytmy numeryczne do rozwiązania różnych rzeczywistych problemów modelowania oraz uzasadnić swój wybór.
5,0Student umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych, potrafi porównać ich efektywność i na tej podstawie uzasadnić swój wybór.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_O/04-4_U01
W wyniku przeprowadzonych zajęć student powinien umieć posłużyć się przykładowym pakietem symulacynym w celu przeprowadzenia procesu modelowania.
2,0Student nie potrafi wykorzystać żadnego pakietu symulacyjnego w celu przeprowadzenia procesu modelowania.
3,0Student potrafi wykorzystać w minimalnym stopniu wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania
3,5Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania prostych systemów jednego typu.
4,0Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania złożonych systemów jednego typu.
4,5Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania prostych systemów różnego typu.
5,0Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania złożonych systemów róznego typu.
ZIP_1A_O/04-4_U02
W wyniku przeprowadzonych zajęć student powinien umieć tworzyć modele komputerowe prostych systemów oraz opracowywać wizualizację działania tych modeli.
2,0Student nie potrafi tworzyć modeli komputerowych.
3,0Student potrafi tworzyć proste modele komputerowe jednego typu.
3,5Student potrafi tworzyć proste modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w postaci wykresów.
4,0Student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w postaci wykresów.
4,5Student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w trybie offline.
5,0Student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w trybie online.
ZIP_1A_O/04-4_U03
W wyniku przeprowadzonych zajęć student powienien umieć analizować wyniki otrzymane w procesie modelowania.
2,0Student nie potrafi analizować wyników otrzymanych w procesie modelowania.
3,0Student potrafi analizować wyniki otrzymane w procesie modelowania prostych systemów jednego typu.
3,5Student potrafi analizować wyniki otrzymane w procesie modelowania prostych systemów różnego typu.
4,0Student potrafi analizować wyniki otrzymane w procesie modelowania złożonych systemów.
4,5Student potrafi analizować wyniki otrzymane w procesie modelowania złożonych systemów oraz wskazać wpływ wykorzyystanych metod w procesie kodowania modelu na wyniki.
5,0Student potrafi analizować wyniki otrzymane w procesie modelowania złożonych systemów oraz wskazać wpływ poszczególnych etapów modelowania na otrzymane wyniki.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_O/04-4_K01
W trakcie przeprowadzonych zajęć student będzie reprezentował aktywną postawę w samokształceniu.
2,0Student nie jest przygotowany do zajęć.
3,0Student jest przygotowany do zajęć w minimalnym stopniu.
3,5Student jest przygotowany do zajęć w minimalnym stopniu i potrafi samodzielnie rozwiązywać proste problemy.
4,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwązywać postawione problemy.
4,5Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach.
5,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach, a także proponować modyfikacje.

Literatura podstawowa

  1. Guntenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2003, III
  2. Morrison F., Sztuka modelowania układów dynamicznych, WNT, Warszawa, 1996, I
  3. Popov O., Elementy teorii systemów – systemy dynamiczne, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2005, II

Literatura dodatkowa

  1. Klempka R., Stankiewicz A., Modelowanie i symulacja układów dynamicznych, Uczelniane Wydawnictwo Naukowo- Dydaktyczne AGH, Kraków, 2004, I
  2. Ljung L., System identification. Theory for the user, Prentice Hall, Upper Saddle River, New York, 1999, II
  3. Kincaid D., Cheney W., Analiza numeryczna, WNT, Warszawa, 2006, III
  4. Mrozek B., Mrozek Z., MATLAB i Simulink. Poradnik użytkownika, Helion, Gliwice, 2010, III

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie - higiena pracy z komputerem, określenie zasad zaliczania i oceny.1
T-L-2Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.2
T-L-3Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.1
T-L-4Modelowanie prostych systemów dynamicznych.2
6

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe określenia i definicje: system i jego własności, modele i ich rodzaje, symulacja komputerowa, proces modelowania1
T-W-2Kategorie modeli matematycznych: definicje, własności i przykłady1
T-W-3Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne1
T-W-4Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne. Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).1
T-W-5Systemy liniowe: metody linearyzacji, założenia i uproszczenia w procesie modelowania. Dynamiczne modele liniowe w przestrzeni stanów. Linearyzacja modeli za pomoca rozkładu w szereg Taylora. Linearyzacja modeli z wykorzystaniem metod identyfikacji.1
T-W-6Model komputerowy. Wybór algorytmów obliczeniowych. Wybór oprogramowania.1
T-W-7Błędy obliczeń i ich rodzaje. Stabilność i uwarunkowanie algorytmów numerycznych.1
T-W-8Weryfikacja, walidacja i kalibracja modelu. Sposoby przedstawiania działania modelu. Wizualizacja.0
T-W-9Zaliczenie wykładu1
8

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach6
A-L-2Przygotowanie do zaliczenia (praca własna studenta)20
26
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach8
A-W-2Uczestnictwo w konsultacjach do wykładu1
A-W-3Przygotowanie do zaliczenia (praca własna studenta)20
29
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_O/04-4_W01W wyniku przeprowadzonych zajęc student powinien być w stanie wyliczać i opisać poszczególne etapy tworzenia modeli matematycznych.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIP_1A_W04ma widzę z zakresu planowania i przeprowadzania prostych eksperymentów badawczych (w tym symulacji komputerowej)
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Ukształtowanie umiejętności tworzenia prostych modeli komputerowych obiektów rzeczywistych.
C-3Zapoznanie studentów z zasadami tworzenia modeli matematycznych systemów różnego typu.
Treści programoweT-W-1Podstawowe określenia i definicje: system i jego własności, modele i ich rodzaje, symulacja komputerowa, proces modelowania
T-W-2Kategorie modeli matematycznych: definicje, własności i przykłady
T-W-3Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne
T-W-4Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne. Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).
Metody nauczaniaM-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
Sposób ocenyS-1Ocena podsumowująca: Wykład - egzamin pisemny (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% maksymalnej liczby punktów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wyliczyć i opisać poszczególnych etapów tworzenia modeli matematycznych.
3,0Student potrafi wyliczyć podstawowe etapy tworzenia modeli matematycznych.
3,5Student potrafi wyliczyć i opisać podstawowe etapy tworzenia modeli matematycznych.
4,0Student potrafi wyliczyć i szczególowo opisać poszczególne etapy tworzenia modeli matematycznych.
4,5Student potrafi wyliczyć i szczególowo opisać etapy tworzenia modeli matematycznych z zachowaniem kolejności ich wystepowania.
5,0Student potrafi przedstawić algorytm procesu modelowania systemów i szczególowo opisać poszczególne jego etapy.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_O/04-4_W02W wyniku przeprowadzonych zajęc student powinien być w stanie dobierać odpowiednie algorytmy numeryczne w procesie kodowania modelu
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIP_1A_W03zna podstawowe metody, techniki, narzędzia i technologie w wybranym obszarze inżynierii produkcji ze szczególnym uwzględnieniem komputerowego wspomagania projektowania i wytwarzania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
InzA_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.
C-3Zapoznanie studentów z zasadami tworzenia modeli matematycznych systemów różnego typu.
Treści programoweT-W-3Modelowanie systemów statycznych: modele fenomenologiczne i behawioralne
T-W-4Modelowanie systemów dynamicznych: definicje, sposoby opisu, zmienne i parametry modelu. Fenomenologiczne modele dynamiczne opisane za pomocą równań stanu formułowane w oparciu o metody bilansowe oraz metody wariacyjne. Behawioralne modele dynamiczne formułowane z wykorzystaniem metod optymalizujących przyjęte wskaźniki jakości (na przykładzie metody najmniejszych kwadratów).
T-W-6Model komputerowy. Wybór algorytmów obliczeniowych. Wybór oprogramowania.
T-W-7Błędy obliczeń i ich rodzaje. Stabilność i uwarunkowanie algorytmów numerycznych.
Metody nauczaniaM-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia laboratoryjne - samodzelna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-1Ocena podsumowująca: Wykład - egzamin pisemny (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% maksymalnej liczby punktów
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie umie dobrać algorytmów numerycznych do rozwiązywania zadań modelowania.
3,0Student umie zaproponować najprostsze algorytmy numeryczne do rozwiązania wybranych zagadnień modelowania systemów.
3,5Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień modelowania systemów.
4,0Student umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień modelowania systemów oraz uzasadnić swój wybór.
4,5Student umie zaproponować algorytmy numeryczne do rozwiązania różnych rzeczywistych problemów modelowania oraz uzasadnić swój wybór.
5,0Student umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych, potrafi porównać ich efektywność i na tej podstawie uzasadnić swój wybór.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_O/04-4_U01W wyniku przeprowadzonych zajęć student powinien umieć posłużyć się przykładowym pakietem symulacynym w celu przeprowadzenia procesu modelowania.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U18potrafi planować, przeprowadzać eksperymenty (w tym pomiary i symulacja komputerowa), interpretować uzyskane wyniki i wyciągać wnioski z eksperymentów
ZIP_1A_U22potrafi wykorzystać w zadaniach inżynierskich metody analityczne, symulacyjne i eksperymentalne
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-1Ukształtowanie umiejętności tworzenia prostych modeli komputerowych obiektów rzeczywistych.
Treści programoweT-L-2Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.
T-L-3Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.
T-L-4Modelowanie prostych systemów dynamicznych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzelna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wykorzystać żadnego pakietu symulacyjnego w celu przeprowadzenia procesu modelowania.
3,0Student potrafi wykorzystać w minimalnym stopniu wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania
3,5Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania prostych systemów jednego typu.
4,0Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania złożonych systemów jednego typu.
4,5Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania prostych systemów różnego typu.
5,0Student potrafi wykorzystać wybrany pakiet symulacyjny w celu przeprowadzenia procesu modelowania złożonych systemów róznego typu.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_O/04-4_U02W wyniku przeprowadzonych zajęć student powinien umieć tworzyć modele komputerowe prostych systemów oraz opracowywać wizualizację działania tych modeli.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U18potrafi planować, przeprowadzać eksperymenty (w tym pomiary i symulacja komputerowa), interpretować uzyskane wyniki i wyciągać wnioski z eksperymentów
ZIP_1A_U22potrafi wykorzystać w zadaniach inżynierskich metody analityczne, symulacyjne i eksperymentalne
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-1Ukształtowanie umiejętności tworzenia prostych modeli komputerowych obiektów rzeczywistych.
C-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.
Treści programoweT-L-2Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.
T-L-3Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.
T-L-4Modelowanie prostych systemów dynamicznych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzelna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi tworzyć modeli komputerowych.
3,0Student potrafi tworzyć proste modele komputerowe jednego typu.
3,5Student potrafi tworzyć proste modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w postaci wykresów.
4,0Student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w postaci wykresów.
4,5Student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w trybie offline.
5,0Student potrafi tworzyć złożone modele komputerowe oraz potrafi opracować wizualizację działania tych modeli w trybie online.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_O/04-4_U03W wyniku przeprowadzonych zajęć student powienien umieć analizować wyniki otrzymane w procesie modelowania.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U18potrafi planować, przeprowadzać eksperymenty (w tym pomiary i symulacja komputerowa), interpretować uzyskane wyniki i wyciągać wnioski z eksperymentów
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.
Treści programoweT-L-2Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.
T-L-4Modelowanie prostych systemów dynamicznych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzelna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi analizować wyników otrzymanych w procesie modelowania.
3,0Student potrafi analizować wyniki otrzymane w procesie modelowania prostych systemów jednego typu.
3,5Student potrafi analizować wyniki otrzymane w procesie modelowania prostych systemów różnego typu.
4,0Student potrafi analizować wyniki otrzymane w procesie modelowania złożonych systemów.
4,5Student potrafi analizować wyniki otrzymane w procesie modelowania złożonych systemów oraz wskazać wpływ wykorzyystanych metod w procesie kodowania modelu na wyniki.
5,0Student potrafi analizować wyniki otrzymane w procesie modelowania złożonych systemów oraz wskazać wpływ poszczególnych etapów modelowania na otrzymane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_O/04-4_K01W trakcie przeprowadzonych zajęć student będzie reprezentował aktywną postawę w samokształceniu.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_K01ma świadomość potrzeby dokształcania ze szczególnym uwzględnieniem samokształcenia się
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-1Ukształtowanie umiejętności tworzenia prostych modeli komputerowych obiektów rzeczywistych.
C-2Ukształtowanie umiejętności przeprowadzania symulacji komputerowych i analizy otrzymanych wyników w oparciu o przykładowe modele.
C-3Zapoznanie studentów z zasadami tworzenia modeli matematycznych systemów różnego typu.
Treści programoweT-L-2Modelowanie jednowymiarowych i wielowymiarowych systemów statycznych.
T-L-3Pakiet Matlab/Simulink jako środowisko do modelowania i wizualizacji systemów.
T-L-4Modelowanie prostych systemów dynamicznych.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzelna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta, zadania realizowane na poszczególnych zajęciach oceniane są w formie punktów, ocena końcowa zależy od liczby zgromadzonych punktów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie jest przygotowany do zajęć.
3,0Student jest przygotowany do zajęć w minimalnym stopniu.
3,5Student jest przygotowany do zajęć w minimalnym stopniu i potrafi samodzielnie rozwiązywać proste problemy.
4,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwązywać postawione problemy.
4,5Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach.
5,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach, a także proponować modyfikacje.