Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (S2)
specjalność: niekonwencjonalne i konwencjonalne systemy energetyczne

Sylabus przedmiotu Systemy ekspertowe w technologii maszyn:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Systemy ekspertowe w technologii maszyn
Specjalność komputerowo wspomagane projektowanie i wytwarzanie maszyn
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Marek Zasada <Marek.Zasada@zut.edu.pl>
Inni nauczyciele Dariusz Grzesiak <Dariusz.Grzesiak@zut.edu.pl>, Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>, Wojciech Kwaczyński <Wojciech.Kwaczynski@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 3 Grupa obieralna 5

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 15 1,00,38zaliczenie
wykładyW2 30 2,00,62zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1podstawy technologii maszyn, podstawy informatyki

Cele przedmiotu

KODCel modułu/przedmiotu
C-1umiejętność systemowego ujęcia procesu technologicznego, poznanie metod projektowania procesów technologicznych.
C-2poznanie podstaw inżynierii wiedzy, poznanie języków programowania logicznego, architektury systemów ekspertowych
C-3umiejętność wykorzystania systemów ekspertowych typu szkieletowego.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Prezentacja funkcjonowania wybranych systemów ekspertowych i języków programowania logicznego. Ćwiczenie zapisu baz wiedzy; faktów, termów, klauzul, formułowania zapytań w wybranym języku programowania logicznego (Prolog). Prezentacja przykładów oraz własne próby kreowania interfejsu i zapisu bazy wiedzy w wybranym systemie szkieletowym (shell’s). Przygotowanie zbioru danych wejściowych i własne opracowanie prostego systemu ekspertowego z dziedziny technologicznego przygotowania produkcji.30
30
wykłady
T-W-1Proces technologiczny (PT) jako system. Procedury projektowania procesu; generacyjne, wariantowe, z wykorzystaniem baz wiedzy. Procesy decyzyjne w projektowaniu PT, złożoność PT, celowość stosowania systemów ekspertowych (SE). SE jako dziedzina sztucznej inteligencji, obszary zastosowań, architektura SE, zadania. Charakterystyka modułów; interfejs użytkownika, baza wiedzy, baza danych, modułu wnioskowania, modułu objaśniający. Elementy inżynierii wiedzy; reprezentacja, pozyskiwanie, metody formalnego zapisu wiedzy. Metody wnioskowania. Narzędzia tworzenia SE; języki programowania w logice (Prolog, Lisp), deklaratywny sposób reprezentacji wiedzy. Języki i systemy ekspertowe szkieletowe (Clips, ExSys); charakterystyka, budowa, wykorzystanie. Syntaktyka zapisu reguł w bazach wiedzy. Reguły dokładne i niepewne, współczynnik CF. Systemy hybrydowe – integracja z innymi metodami sztucznej inteligencji (algorytmami genetycznymi, sieciami neuronowymi, fuzzy logic). Przykłady funkcjonujących SE, perspektywy dalszych zastosowań.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach15
A-L-2opracowanie sprawozdań15
30
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2studium wskazanej literatury30
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1wykład ilustrowany materiałami audiowizualnymi

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: aktywność na zajęciach,
S-2Ocena formująca: ocena sprawozdań z zajęć laboratoryjnych (omawianych ustnie),
S-3Ocena formująca: ocena kolokwium zaliczeniowego z wykładanego materiału.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_KWP/07-2_W01
metody i techniki stosowane przy rozwiązywaniu zadań w dziedzinie kierunku studiów
MBM_2A_W10T2A_W07C-1T-W-1, T-L-1M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_KWP/07-2_U01
integracja wiedzy zdobytej na własnym kierunku studiów
MBM_2A_U10T2A_U10C-1T-W-1, T-L-1M-1S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
MBM_2A_KWP/07-2_W01
metody i techniki stosowane przy rozwiązywaniu zadań w dziedzinie kierunku studiów
2,0potrafi definiować zadania rozwiązywane z zastosowaniem systemów ekspertowych
3,0rozumie pojęcie baz wiedzy, zna techniki zapisu i kodowania wiedzy
3,5potrafi kodować wiedzę za pomocą reguł
4,0potrafi opracować koncepcję systemu ekspertowego w tematyce technologii maszyn
4,5potrafi opracować prosty system ekspertowy typu shell, wprowadzać reguły , testować system
5,0pozytywny wynik kolokwium, prawidłowo opracowane sprawozdania, sprawne posługiwanie się wybranym systemem szkieletowym (Shell)

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
MBM_2A_KWP/07-2_U01
integracja wiedzy zdobytej na własnym kierunku studiów
2,0zna podstawowe pojęcia z dziedziny sztucznej inteligencji, szczególnie systemów ekspertowych, potrafi definiować zadania rozwiązywane z zastosowaniem systemów ekspertowych
3,0potrafi definiować podstawowe zadania, które mogą być przedmiotem systemów ekspertowych, rozumie pojęcie baz wiedzy, zna techniki zapisu i kodowania wiedzy
3,5zna struktury i modułów systemów ekspertowych (SE)], potrafi kodować wiedzę za pomocą reguł
4,0zna podstawy języków programowania w logice (Prolog), oraz wybranego języka typu Shell, potrafi opracować koncepcję systemu ekspertowego w tematyce technologii maszyn
4,5potrafi dobrać oprogramowanie typu Shell, przygotować testową bazę wiedzy, uruchomić i ocenić przydatność i efektywność zastosowania SE, potrafi opracować prosty system ekspertowy typu shell, wprowadzać reguły , testować system
5,0zna struktury systemów ekspertowych, sprawnie posługuje się wybranym systemem szkieletowym (Shell), pozytywny wynik kolokwim

Literatura podstawowa

  1. Mulawka J.: Systemy ekspertowe, Systemy ekspertowe, WNT, Warszawa, 1997
  2. Knosala R., Zastosowanie metod sztucznej inteligencji w inżynierii produkcji, WNT, Warszawa, 2002
  3. Szajna J. i in., Turbo Prolog. Programowanie w języku logiki, WNT, Warszawa, 1991

Literatura dodatkowa

  1. Jackson P., Introduction to Expert Systems, 3rd ed., Addison–Wesley, 1999., Addison–Wesley, Addison–Wesley, 1999
  2. Merritt D., Building Expert Systems in Prolog, http://www.amzi.com/ExpertSystemsInProlog, materiały internetowe, 2011
  3. Wiielemaker J., SWI-Prolog, http://www.swi-prolog.org, materiały internetowe, 2011

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Prezentacja funkcjonowania wybranych systemów ekspertowych i języków programowania logicznego. Ćwiczenie zapisu baz wiedzy; faktów, termów, klauzul, formułowania zapytań w wybranym języku programowania logicznego (Prolog). Prezentacja przykładów oraz własne próby kreowania interfejsu i zapisu bazy wiedzy w wybranym systemie szkieletowym (shell’s). Przygotowanie zbioru danych wejściowych i własne opracowanie prostego systemu ekspertowego z dziedziny technologicznego przygotowania produkcji.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Proces technologiczny (PT) jako system. Procedury projektowania procesu; generacyjne, wariantowe, z wykorzystaniem baz wiedzy. Procesy decyzyjne w projektowaniu PT, złożoność PT, celowość stosowania systemów ekspertowych (SE). SE jako dziedzina sztucznej inteligencji, obszary zastosowań, architektura SE, zadania. Charakterystyka modułów; interfejs użytkownika, baza wiedzy, baza danych, modułu wnioskowania, modułu objaśniający. Elementy inżynierii wiedzy; reprezentacja, pozyskiwanie, metody formalnego zapisu wiedzy. Metody wnioskowania. Narzędzia tworzenia SE; języki programowania w logice (Prolog, Lisp), deklaratywny sposób reprezentacji wiedzy. Języki i systemy ekspertowe szkieletowe (Clips, ExSys); charakterystyka, budowa, wykorzystanie. Syntaktyka zapisu reguł w bazach wiedzy. Reguły dokładne i niepewne, współczynnik CF. Systemy hybrydowe – integracja z innymi metodami sztucznej inteligencji (algorytmami genetycznymi, sieciami neuronowymi, fuzzy logic). Przykłady funkcjonujących SE, perspektywy dalszych zastosowań.30
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach15
A-L-2opracowanie sprawozdań15
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2studium wskazanej literatury30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_KWP/07-2_W01metody i techniki stosowane przy rozwiązywaniu zadań w dziedzinie kierunku studiów
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_W10zna podstawowe metody i techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań w zakresie konstruowania, pomiarów, projektowania technologii i eksploatacji
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1umiejętność systemowego ujęcia procesu technologicznego, poznanie metod projektowania procesów technologicznych.
Treści programoweT-W-1Proces technologiczny (PT) jako system. Procedury projektowania procesu; generacyjne, wariantowe, z wykorzystaniem baz wiedzy. Procesy decyzyjne w projektowaniu PT, złożoność PT, celowość stosowania systemów ekspertowych (SE). SE jako dziedzina sztucznej inteligencji, obszary zastosowań, architektura SE, zadania. Charakterystyka modułów; interfejs użytkownika, baza wiedzy, baza danych, modułu wnioskowania, modułu objaśniający. Elementy inżynierii wiedzy; reprezentacja, pozyskiwanie, metody formalnego zapisu wiedzy. Metody wnioskowania. Narzędzia tworzenia SE; języki programowania w logice (Prolog, Lisp), deklaratywny sposób reprezentacji wiedzy. Języki i systemy ekspertowe szkieletowe (Clips, ExSys); charakterystyka, budowa, wykorzystanie. Syntaktyka zapisu reguł w bazach wiedzy. Reguły dokładne i niepewne, współczynnik CF. Systemy hybrydowe – integracja z innymi metodami sztucznej inteligencji (algorytmami genetycznymi, sieciami neuronowymi, fuzzy logic). Przykłady funkcjonujących SE, perspektywy dalszych zastosowań.
T-L-1Prezentacja funkcjonowania wybranych systemów ekspertowych i języków programowania logicznego. Ćwiczenie zapisu baz wiedzy; faktów, termów, klauzul, formułowania zapytań w wybranym języku programowania logicznego (Prolog). Prezentacja przykładów oraz własne próby kreowania interfejsu i zapisu bazy wiedzy w wybranym systemie szkieletowym (shell’s). Przygotowanie zbioru danych wejściowych i własne opracowanie prostego systemu ekspertowego z dziedziny technologicznego przygotowania produkcji.
Metody nauczaniaM-1wykład ilustrowany materiałami audiowizualnymi
Sposób ocenyS-1Ocena formująca: aktywność na zajęciach,
Kryteria ocenyOcenaKryterium oceny
2,0potrafi definiować zadania rozwiązywane z zastosowaniem systemów ekspertowych
3,0rozumie pojęcie baz wiedzy, zna techniki zapisu i kodowania wiedzy
3,5potrafi kodować wiedzę za pomocą reguł
4,0potrafi opracować koncepcję systemu ekspertowego w tematyce technologii maszyn
4,5potrafi opracować prosty system ekspertowy typu shell, wprowadzać reguły , testować system
5,0pozytywny wynik kolokwium, prawidłowo opracowane sprawozdania, sprawne posługiwanie się wybranym systemem szkieletowym (Shell)
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_KWP/07-2_U01integracja wiedzy zdobytej na własnym kierunku studiów
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_U10potrafi, przy formułowaniu i rozwiązywaniu zadań inżynierskich integrować wiedzę z zakresu konstrukcji, technologii, planowania, automatyzacji i eksploatacji, stosować podejście systemowe oraz uwzględniać aspekty pozatechniczne
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - integrować wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne
Cel przedmiotuC-1umiejętność systemowego ujęcia procesu technologicznego, poznanie metod projektowania procesów technologicznych.
Treści programoweT-W-1Proces technologiczny (PT) jako system. Procedury projektowania procesu; generacyjne, wariantowe, z wykorzystaniem baz wiedzy. Procesy decyzyjne w projektowaniu PT, złożoność PT, celowość stosowania systemów ekspertowych (SE). SE jako dziedzina sztucznej inteligencji, obszary zastosowań, architektura SE, zadania. Charakterystyka modułów; interfejs użytkownika, baza wiedzy, baza danych, modułu wnioskowania, modułu objaśniający. Elementy inżynierii wiedzy; reprezentacja, pozyskiwanie, metody formalnego zapisu wiedzy. Metody wnioskowania. Narzędzia tworzenia SE; języki programowania w logice (Prolog, Lisp), deklaratywny sposób reprezentacji wiedzy. Języki i systemy ekspertowe szkieletowe (Clips, ExSys); charakterystyka, budowa, wykorzystanie. Syntaktyka zapisu reguł w bazach wiedzy. Reguły dokładne i niepewne, współczynnik CF. Systemy hybrydowe – integracja z innymi metodami sztucznej inteligencji (algorytmami genetycznymi, sieciami neuronowymi, fuzzy logic). Przykłady funkcjonujących SE, perspektywy dalszych zastosowań.
T-L-1Prezentacja funkcjonowania wybranych systemów ekspertowych i języków programowania logicznego. Ćwiczenie zapisu baz wiedzy; faktów, termów, klauzul, formułowania zapytań w wybranym języku programowania logicznego (Prolog). Prezentacja przykładów oraz własne próby kreowania interfejsu i zapisu bazy wiedzy w wybranym systemie szkieletowym (shell’s). Przygotowanie zbioru danych wejściowych i własne opracowanie prostego systemu ekspertowego z dziedziny technologicznego przygotowania produkcji.
Metody nauczaniaM-1wykład ilustrowany materiałami audiowizualnymi
Sposób ocenyS-1Ocena formująca: aktywność na zajęciach,
Kryteria ocenyOcenaKryterium oceny
2,0zna podstawowe pojęcia z dziedziny sztucznej inteligencji, szczególnie systemów ekspertowych, potrafi definiować zadania rozwiązywane z zastosowaniem systemów ekspertowych
3,0potrafi definiować podstawowe zadania, które mogą być przedmiotem systemów ekspertowych, rozumie pojęcie baz wiedzy, zna techniki zapisu i kodowania wiedzy
3,5zna struktury i modułów systemów ekspertowych (SE)], potrafi kodować wiedzę za pomocą reguł
4,0zna podstawy języków programowania w logice (Prolog), oraz wybranego języka typu Shell, potrafi opracować koncepcję systemu ekspertowego w tematyce technologii maszyn
4,5potrafi dobrać oprogramowanie typu Shell, przygotować testową bazę wiedzy, uruchomić i ocenić przydatność i efektywność zastosowania SE, potrafi opracować prosty system ekspertowy typu shell, wprowadzać reguły , testować system
5,0zna struktury systemów ekspertowych, sprawnie posługuje się wybranym systemem szkieletowym (Shell), pozytywny wynik kolokwim
zamknij

Ta strona używa ciasteczek (cookies), dzięki którym nasz serwis może działać lepiej. Dowiedz się więcej.