Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Budowa jachtów (S1)

Sylabus przedmiotu Podstawy automatyki:

Informacje podstawowe

Kierunek studiów Budowa jachtów
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy automatyki
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Klimatyzacji i Transportu Chłodniczego
Nauczyciel odpowiedzialny Piotr Nikończuk <Piotr.Nikonczuk@zut.edu.pl>
Inni nauczyciele Piotr Nikończuk <Piotr.Nikonczuk@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 15 1,00,50zaliczenie
laboratoriaL2 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka, rachunek macierzowy

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Znajomość dynamiki i stabilności liniowych układów regulacji
C-2Znajomość współczesnych metod sterowania automatycznego
C-3Orientacja w układach steroników PLC oraz układów monitoringu i wizualizacji.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Instruktaż BHP. Wprowadzenie do Matlab’a.2
T-L-2Wyznaczanie charakterystyk podstawowych członów automatyki.2
T-L-3Dobór nastaw regulatora PID.2
T-L-4Badanie stabilności układów sterowania.2
T-L-5Programowanie sterowników PLC2
T-L-6Systemy monitoringu i wizualizacji.2
T-L-7Modelowanie ruchu jednostki pływającej. Symulacja stabilizacji kursu.2
T-L-8Zaliczenie zajęć laboratoryjnych1
15
wykłady
T-W-1Elementy liniowych układów regulacji. Funkcja przejścia. Charakterystyki czasowe i częstotliwościowe.3
T-W-2Regulatory PID. Kryteria stabilności układów regulacji. Analiza układów regulacji w dziedzinie czasu i w dziedzinie częstotliwości.3
T-W-3Sterowniki programowalne. Systemy monitoringu i wizualizacji.4
T-W-4Wstęp do sterowania odpornego i rozmytego.2
T-W-5Jednostka pływająca jako obiekt regulacji.2
T-W-6Zaliczenie przedmiotu1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach15
A-L-2przygotowanie się do zajęć, opracowywanie wyników7
A-L-3przygotowanie się do zaliczenia3
25
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2studiowanie literatury4
A-W-3przygotowanie do zaliczenia6
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające
M-2Metody problemowe
M-3metody programowane
M-4metody praktyczne

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: zaliczenie pisemne
S-2Ocena podsumowująca: sprawozdania z laboratoriów

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BJ_1A_B11_W01
ma wiedzę o liniowych układach regulacji oraz jednostki pływającej jako obiektu regulacji
BJ_1A_W09T1A_W02, T1A_W07InzA_W02C-1, C-2, C-3T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7M-1, M-2, M-3, M-4S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BJ_1A_B11_U01
potrafi przeprowadzić symulację układu regulacji i monitoringu z jednostką pływającą lub jej elementem jako obiektem regulacji
BJ_1A_U08T1A_U08, T1A_U09InzA_U01, InzA_U02C-1, C-2T-W-1, T-W-2, T-W-3, T-W-5, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7M-1, M-2, M-3, M-4S-1, S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BJ_1A_B11_K01
Rozumie potrzebę identyfikacji obiektów sterowania, orientuje się we współczesnych układach sterowania i monitoringu.
BJ_1A_K08T1A_K02, T1A_K07InzA_K01C-1, C-2, C-3T-W-1, T-W-2, T-W-3, T-W-4, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6M-1, M-2, M-3, M-4S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
BJ_1A_B11_W01
ma wiedzę o liniowych układach regulacji oraz jednostki pływającej jako obiektu regulacji
2,0nie posiada podatawowej wiedzy na tema liniowych układów sterowania
3,0posiada podatawową wiedzę na tema liniowych układów sterowania. Nie posiada wiedzy na temat cyfrowych układów regulacji i monitoringu oraz jednostki pływającej jako obiektu sterowania.
3,5posiada wiedzę na poziomie pomiędzy 3,0 a 4,0
4,0posiada podatawową wiedzę na tema liniowych układów sterowania. Posiada niekompletną wiedzę na temat cyfrowych układów regulacji i monitoringu oraz jednostki pływającej jako obiektu sterowania.
4,5posiada wiedzę na poziomie pomiędzy 4,0 a 5,0
5,0posiada podatawową wiedzę na tema liniowych układów sterowania. Posiada kompletną wiedzę na temat cyfrowych układów regulacji i monitoringu oraz jednostki pływającej jako obiektu sterowania.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
BJ_1A_B11_U01
potrafi przeprowadzić symulację układu regulacji i monitoringu z jednostką pływającą lub jej elementem jako obiektem regulacji
2,0nie potrafi utworzyć modelu liniowego układu regulacji.
3,0Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Nie potrafi zidentyfikować jednostki pływającej jako obiektu regulacji.
3,5posiada umiejętności na poziomie pomiędzy 3,0 a 4,0
4,0Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Potrafi zidentyfikować jednostkę pływającą jako obiekt regulacji oraz potrafi dobrać regulator dla liniwego modelu jednostki pływającej.
4,5posiada umiejętności na poziomie pomiędzy 4,0 a 5,0
5,0Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Potrafi zidentyfikować jednostkę pływającą jako obiekt regulacji oraz potrafi dobrać regulator odporny dla zidentyfikowanej jednostki pływającej.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
BJ_1A_B11_K01
Rozumie potrzebę identyfikacji obiektów sterowania, orientuje się we współczesnych układach sterowania i monitoringu.
2,0Nie jest w stanie określić dynamiki obiektu lub procesu.
3,0Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki.
3,5Kompetencje na poziomie pomiędzy 3,0 a 4,0.
4,0Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. Przeciętnie orientuje się we współczesnych metodach sterowania.
4,5Kompetencje na poziomie pomiędzy 4,0 a 5,0.
5,0Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. Dobrze orientuje się we współczesnych metodach sterowania.

Literatura podstawowa

  1. Emirsajłow Z., Teoria układów sterowania. Część I. Układy liniowe z czasem ciągłym, Seria Tempus. Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2000
  2. Drianikov D., Hellendoorn H., Reinfrank M., Wprowadzenie do sterowania rozmytego, Wydawnictwa Naukowo - Techniczne, Warszawa, 1996
  3. Domachowski Z., Ghaemi M. H., Okrętowe układy automatyki, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2007

Literatura dodatkowa

  1. Mrozek B., Mrozek Z., Matlab uniwersalne środowisko do obliczeń naukowo-technicznych, PLJ, Warszawa, 1996, 3

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Instruktaż BHP. Wprowadzenie do Matlab’a.2
T-L-2Wyznaczanie charakterystyk podstawowych członów automatyki.2
T-L-3Dobór nastaw regulatora PID.2
T-L-4Badanie stabilności układów sterowania.2
T-L-5Programowanie sterowników PLC2
T-L-6Systemy monitoringu i wizualizacji.2
T-L-7Modelowanie ruchu jednostki pływającej. Symulacja stabilizacji kursu.2
T-L-8Zaliczenie zajęć laboratoryjnych1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Elementy liniowych układów regulacji. Funkcja przejścia. Charakterystyki czasowe i częstotliwościowe.3
T-W-2Regulatory PID. Kryteria stabilności układów regulacji. Analiza układów regulacji w dziedzinie czasu i w dziedzinie częstotliwości.3
T-W-3Sterowniki programowalne. Systemy monitoringu i wizualizacji.4
T-W-4Wstęp do sterowania odpornego i rozmytego.2
T-W-5Jednostka pływająca jako obiekt regulacji.2
T-W-6Zaliczenie przedmiotu1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach15
A-L-2przygotowanie się do zajęć, opracowywanie wyników7
A-L-3przygotowanie się do zaliczenia3
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2studiowanie literatury4
A-W-3przygotowanie do zaliczenia6
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBJ_1A_B11_W01ma wiedzę o liniowych układach regulacji oraz jednostki pływającej jako obiektu regulacji
Odniesienie do efektów kształcenia dla kierunku studiówBJ_1A_W09ma ogólną wiedzę z termodynamiki, elektrotechniki, elektroniki i automatyki w zakresie przydatnym w budowie i eksploatacji jachtów
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Znajomość dynamiki i stabilności liniowych układów regulacji
C-2Znajomość współczesnych metod sterowania automatycznego
C-3Orientacja w układach steroników PLC oraz układów monitoringu i wizualizacji.
Treści programoweT-W-1Elementy liniowych układów regulacji. Funkcja przejścia. Charakterystyki czasowe i częstotliwościowe.
T-W-2Regulatory PID. Kryteria stabilności układów regulacji. Analiza układów regulacji w dziedzinie czasu i w dziedzinie częstotliwości.
T-W-3Sterowniki programowalne. Systemy monitoringu i wizualizacji.
T-W-4Wstęp do sterowania odpornego i rozmytego.
T-W-5Jednostka pływająca jako obiekt regulacji.
T-L-2Wyznaczanie charakterystyk podstawowych członów automatyki.
T-L-3Dobór nastaw regulatora PID.
T-L-4Badanie stabilności układów sterowania.
T-L-5Programowanie sterowników PLC
T-L-6Systemy monitoringu i wizualizacji.
T-L-7Modelowanie ruchu jednostki pływającej. Symulacja stabilizacji kursu.
Metody nauczaniaM-1Metody podające
M-2Metody problemowe
M-3metody programowane
M-4metody praktyczne
Sposób ocenyS-1Ocena podsumowująca: zaliczenie pisemne
S-2Ocena podsumowująca: sprawozdania z laboratoriów
Kryteria ocenyOcenaKryterium oceny
2,0nie posiada podatawowej wiedzy na tema liniowych układów sterowania
3,0posiada podatawową wiedzę na tema liniowych układów sterowania. Nie posiada wiedzy na temat cyfrowych układów regulacji i monitoringu oraz jednostki pływającej jako obiektu sterowania.
3,5posiada wiedzę na poziomie pomiędzy 3,0 a 4,0
4,0posiada podatawową wiedzę na tema liniowych układów sterowania. Posiada niekompletną wiedzę na temat cyfrowych układów regulacji i monitoringu oraz jednostki pływającej jako obiektu sterowania.
4,5posiada wiedzę na poziomie pomiędzy 4,0 a 5,0
5,0posiada podatawową wiedzę na tema liniowych układów sterowania. Posiada kompletną wiedzę na temat cyfrowych układów regulacji i monitoringu oraz jednostki pływającej jako obiektu sterowania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBJ_1A_B11_U01potrafi przeprowadzić symulację układu regulacji i monitoringu z jednostką pływającą lub jej elementem jako obiektem regulacji
Odniesienie do efektów kształcenia dla kierunku studiówBJ_1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne i eksperymentalne; potrafi interpretować uzyskane wyniki i wyciągać wnioski dotyczące właściwości projektowanych jednostek pływających
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-1Znajomość dynamiki i stabilności liniowych układów regulacji
C-2Znajomość współczesnych metod sterowania automatycznego
Treści programoweT-W-1Elementy liniowych układów regulacji. Funkcja przejścia. Charakterystyki czasowe i częstotliwościowe.
T-W-2Regulatory PID. Kryteria stabilności układów regulacji. Analiza układów regulacji w dziedzinie czasu i w dziedzinie częstotliwości.
T-W-3Sterowniki programowalne. Systemy monitoringu i wizualizacji.
T-W-5Jednostka pływająca jako obiekt regulacji.
T-L-2Wyznaczanie charakterystyk podstawowych członów automatyki.
T-L-3Dobór nastaw regulatora PID.
T-L-4Badanie stabilności układów sterowania.
T-L-5Programowanie sterowników PLC
T-L-6Systemy monitoringu i wizualizacji.
T-L-7Modelowanie ruchu jednostki pływającej. Symulacja stabilizacji kursu.
Metody nauczaniaM-1Metody podające
M-2Metody problemowe
M-3metody programowane
M-4metody praktyczne
Sposób ocenyS-1Ocena podsumowująca: zaliczenie pisemne
S-2Ocena podsumowująca: sprawozdania z laboratoriów
Kryteria ocenyOcenaKryterium oceny
2,0nie potrafi utworzyć modelu liniowego układu regulacji.
3,0Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Nie potrafi zidentyfikować jednostki pływającej jako obiektu regulacji.
3,5posiada umiejętności na poziomie pomiędzy 3,0 a 4,0
4,0Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Potrafi zidentyfikować jednostkę pływającą jako obiekt regulacji oraz potrafi dobrać regulator dla liniwego modelu jednostki pływającej.
4,5posiada umiejętności na poziomie pomiędzy 4,0 a 5,0
5,0Potrafi zamodelować prosty liniowy układ regulacji, sprawdzić stabilność układu regulacji. Potrafi zidentyfikować jednostkę pływającą jako obiekt regulacji oraz potrafi dobrać regulator odporny dla zidentyfikowanej jednostki pływającej.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBJ_1A_B11_K01Rozumie potrzebę identyfikacji obiektów sterowania, orientuje się we współczesnych układach sterowania i monitoringu.
Odniesienie do efektów kształcenia dla kierunku studiówBJ_1A_K08rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy i umiejętności oraz związaną z tym odpowiedzialność
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
T1A_K07ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-1Znajomość dynamiki i stabilności liniowych układów regulacji
C-2Znajomość współczesnych metod sterowania automatycznego
C-3Orientacja w układach steroników PLC oraz układów monitoringu i wizualizacji.
Treści programoweT-W-1Elementy liniowych układów regulacji. Funkcja przejścia. Charakterystyki czasowe i częstotliwościowe.
T-W-2Regulatory PID. Kryteria stabilności układów regulacji. Analiza układów regulacji w dziedzinie czasu i w dziedzinie częstotliwości.
T-W-3Sterowniki programowalne. Systemy monitoringu i wizualizacji.
T-W-4Wstęp do sterowania odpornego i rozmytego.
T-L-2Wyznaczanie charakterystyk podstawowych członów automatyki.
T-L-3Dobór nastaw regulatora PID.
T-L-4Badanie stabilności układów sterowania.
T-L-5Programowanie sterowników PLC
T-L-6Systemy monitoringu i wizualizacji.
Metody nauczaniaM-1Metody podające
M-2Metody problemowe
M-3metody programowane
M-4metody praktyczne
Sposób ocenyS-1Ocena podsumowująca: zaliczenie pisemne
S-2Ocena podsumowująca: sprawozdania z laboratoriów
Kryteria ocenyOcenaKryterium oceny
2,0Nie jest w stanie określić dynamiki obiektu lub procesu.
3,0Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki.
3,5Kompetencje na poziomie pomiędzy 3,0 a 4,0.
4,0Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. Przeciętnie orientuje się we współczesnych metodach sterowania.
4,5Kompetencje na poziomie pomiędzy 4,0 a 5,0.
5,0Jest w stanie określić dynamikę obiektu lub procesu, poprawnie sklasyfikować go w grupie liniowych układów automatyki. Dobrze orientuje się we współczesnych metodach sterowania.