Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | Nano_1A_C15_U01 | Student potrafi wykorzystać zdobytą wiedzę do zaproponowania metody otrzymywania nanokatalizatorów, potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związane z ich stosowaniem. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | Nano_1A_U01 | potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie nanotechnologi, nanomateriałów, fizyki, chemii, inżynierii materiałowej i nauk pokrewnych; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie |
---|
Nano_1A_U09 | potrafi identyfikować problematykę fizyczną i chemiczną w zjawiskach naturalnych i procesach technologicznych oraz wykorzystywać metodykę badań fizykochemicznych (wyniki eksperymentalne, symulacje) do formułowania i rozwiązywania zadań inżynierskich |
Nano_1A_U10 | potrafi dokonać doboru metod analitycznych i aparatury właściwych dla przeprowadzenia badań laboratoryjnych oraz dokonać krytycznej analizy sposobów ich wykorzystania i ocenić istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
Nano_1A_U13 | potrafi oceniać zagrożenia związane ze stosowaniem produktów i procesów chemicznych i fizycznych oraz stosować zasady bezpieczeństwa i higieny pracy |
Nano_1A_U14 | potrafi oznaczać właściwości fizyczne i chemiczne związków chemicznych i materiałów, w szczególności nanomateriałów przy wykorzystaniu odpowiednich technik badawczych |
Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | T1A_U01 | potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie |
---|
T1A_U05 | ma umiejętność samokształcenia się |
T1A_U07 | potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej |
T1A_U08 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
T1A_U09 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
T1A_U11 | ma przygotowanie niezbędne do pracy w środowisku przemysłowym oraz zna zasady bezpieczeństwa związane z tą pracą |
T1A_U13 | potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
T1A_U14 | potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów |
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | InzA_U01 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
---|
InzA_U02 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
InzA_U05 | potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
InzA_U06 | potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów |
Cel przedmiotu | C-1 | Celem przedmiotu jest zapoznanie Studentów z zagadnieniami dotyczącymi wykorzystywania nanomateriałów w procesach katalitycznych. Zapoznanie Studentów z metodami preparatyki nanokatalizatorów, technikami stosowanymi do charakterystyki nanokatalizatorów oraz możliwościami ich wykorzystania w nanokatalizie. |
---|
Treści programowe | T-W-1 | Składniki katalizatora i ich funkcje. |
---|
T-W-2 | Kataliza na nanocząstkach. Nanocząstki koloidalne stabilizowane surfaktantami, jako prekursory nanokatalizatorów |
T-W-3 | Metody preparatyki nanokatalizatorów. |
T-W-4 | Nośniki tlenkowe i węglowe stosowane w nanokatalizatorach. |
T-W-5 | Metody charakterystyki struktury i powierzchni właściwej nanokatalizatorów heterogenicznych. |
T-W-6 | Nośnikowe nanokatalizatory mono- i bimetaliczne. |
T-W-7 | Katalizatory nanoporowate. |
T-W-8 | Wybrane reakcje przebiegajace z udziałem nanokatalizatorów i ich mechanizmy |
T-L-1 | Ćwiczenia laboratoryjne związane z preparatyką i charakteryzowaniem nankatalizatorów nośnikowych |
Metody nauczania | M-1 | Wykład wspomagany prezentacją multimedialną |
---|
M-2 | Ćwiczenia laboratoryjne |
Sposób oceny | S-1 | Ocena formująca: Ocena aktywności na zajeciach laboratoryjnych. |
---|
S-2 | Ocena podsumowująca: Zaliczenie pisemne w wykładów |
S-3 | Ocena podsumowująca: Zaliczenie pismene oraz ocena wykonanego sprawozdania z ćwiczeń laboratoryjnych |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie potrafi lub potrafi w stopniu niewystarczającym wykorzystać zdobytej wiedzy do zaproponowania metody otrzymywania nanokatalizatorów, nie potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związanego z ich stosowaniem. |
3,0 | Student potrafi w stopniu dostatecznym wykorzystać zdobytą wiedzę do zaproponowania metody otrzymywania nanokatalizatorów, potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związane z ich stosowaniem. Umiejętności zdobyte przez Studenta wynoszą 60 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
3,5 | Student potrafi w stopniu większym, niż dostateczny, wykorzystać zdobytą wiedzę do zaproponowania metody otrzymywania nanokatalizatorów, potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związane z ich stosowaniem. Umiejętności zdobyte przez Studenta wynoszą 70 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
4,0 | Student potrafi w stopniu dobrym wykorzystać zdobytą wiedzę do zaproponowania metody otrzymywania nanokatalizatorów, potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związane z ich stosowaniem. Umiejętności zdobyte przez Studenta wynoszą 80 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
4,5 | Student potrafi w stopniu większym, niż dobry, wykorzystać zdobytą wiedzę do zaproponowania metody otrzymywania nanokatalizatorów, potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związane z ich stosowaniem. Umiejętności zdobyte przez Studenta wynoszą 90 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
5,0 | Student w pełni potrafi wykorzystać zdobytą wiedzę do zaproponowania metody otrzymywania nanokatalizatorów, potrafi dokonać doboru odpowiednich technik i metod do kontroli badanego procesu i otrzymanych nanomateriałów oraz ocenić zagrożenia związane z ich stosowaniem. |