Wydział Budownictwa i Architektury - Inżynieria środowiska (S2)
specjalność: Alternatywne Żródła Energii w Budownictwie
Sylabus przedmiotu Automatyka urządzeń energetycznych:
Informacje podstawowe
Kierunek studiów | Inżynieria środowiska | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Automatyka urządzeń energetycznych | ||
Specjalność | Alternatywne Żródła Energii w Budownictwie | ||
Jednostka prowadząca | Instytut Technologii Mechanicznej | ||
Nauczyciel odpowiedzialny | Mariusz Sosnowski <Mariusz.Sosnowski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Algebra i analiza matematyczna. |
W-2 | Fizyka (w zakresie szkoły średniej). |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studenta z podstawowymi pojęciami automatyki. |
C-2 | Zapoznanie studenta z budową i działaniem podstawowych urządzeń wykorzystywanych w układach sterowania i regulacji. |
C-3 | Umiejętność doboru nastaw regulatora i wyznaczanie wskaźników stabilności. |
C-4 | Opanowanie teoretycznych i praktycznych umiejętności projektowania (syntezy i analizy) złożonych układów cyfrowych. |
C-5 | Zapoznanie z budową i działaniem sterowników PLC oraz opanowanie podstaw ich programowania. |
C-6 | Umiejętność swobodnego tworzenia programów sterujących dla sterowników PLC. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Omówienie zasad prowadzenia zajęć projektowych. Przedstawienie listy indywidualnych tematów projektowych wraz z podstawowymi założeniami technicznymi i wymaganiami. | 4 |
T-P-2 | Prezentacje postępów w rozwiązaniu problemów związanych z projektem. Dyskusja nad projektami i prezentacjami. Udzielenie wskazówek do dalszej pracy. | 20 |
T-P-3 | Końcowa prezentacja wykonanej dokumentacji technicznej projektu, przeprowadzonych symulacji, uruchomienia na modułach demonstracyjnych i innych badań. Szacunkowa analiza kosztów wykonania zaprojektowanego urządzenia. Wspólna dyskusja nad każdym projektem. Wskazanie zalet, wad, możliwości rozwojowych. | 6 |
30 | ||
wykłady | ||
T-W-1 | Podstawowe pojęcia automatyki. Elementy otwartych układów sterowania i zamkniętych układów regulacji, sprzężenie zwrotne. Cel regulacji i przykłady rzeczywistych układów regulacji. | 2 |
T-W-2 | Badanie stabilności i jakości regulacji. Kryterium stabilności Hurwitza i Nyquista. Schematy blokowe. | 1 |
T-W-3 | Podział regulatorów. Projektowanie układów regulacji, dobór struktury i nastaw regulatorów. | 2 |
T-W-4 | Przewidywanie przyszłych stanów i procesów w automatyce. | 1 |
T-W-5 | Zastosowanie automatyki w układach zasilających. | 1 |
T-W-6 | Układy stycznikowo-przekaźnikowe w energetyce. | 2 |
T-W-7 | Układy automatyki cyfrowej. Elementy logiczne. Cyfrowe bloki funkcjonalne. Projektowanie układów przełączających. Projektowanie układów cyfrowych - przykłady. | 4 |
T-W-8 | Sterowniki programowalne PLC (konstrukcja, zasady i języki programowania, zasady projektowania algorytmów sterownia). | 2 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | Uczestnictwo w zajęciach | 15 |
A-P-2 | Praca w domu i bibliotekach nad indywidualnym tematem projektu. Studiowanie podobnych rozwiązań, analiza not aplikacyjnych i katalogowych. | 20 |
A-P-3 | Wykonanie badań symulacyjnych i/lub uruchomieniowych zaprojektowanego projektu. | 20 |
A-P-4 | Wykonanie dokumentacji technicznej projektu. | 5 |
60 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach. | 15 |
A-W-2 | Praca własna. Studium literaturowe. Przygotowanie do zaliczeń wykładów. | 13 |
A-W-3 | Udział w egzaminie. | 2 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład multimedialny z elementami konwersatoryjnymi. |
M-2 | Metoda problemowa; w odniesieniu do wykładu, tej jej części, w której dyskutowane jest aktywizujące audytorium rozwiązywanie problemu obliczeniowego. |
M-3 | W odniesieniu do zajęć praktycznych: pokaz i demonstracja wybranych zagadnień automatyki. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca: końcowy egzamin pisemny lub ustny. |
S-2 | Ocena podsumowująca: W odniesieniu do zajęć praktycznych; ocena formująca: ocena jakości projektów i przydatności w automatyce. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_2A_S2/D/AZE/9_W01 W odniesieniu do wybranego punktu programu kierunku studiów: student powinien znać podstawowe pojęcia związane z automatyką, scharakteryzować budowę i działanie układu regulacji automatycznej, znać podstawowe techniki badań i projektowania układów regulacji, powinien scharakteryzować budowę i działanie układów regulacji cyfrowej, ze szczególnym uwzględnieniem sterowników programowalnych PLC. | IS_2A_W04, IS_2A_W05 | T2A_W04, T2A_W07 | InzA2_W01, InzA2_W02 | C-1, C-2, C-3, C-4, C-5, C-6 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-7, T-W-8, T-W-6, T-W-5 | M-1, M-3 | S-1 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_2A_S2/D/AZE/9_U01 Student posiada umiejętność dokonywania analizy funkcjonalnej rzeczywistego układu regulacji, umie zbadać własności układu regulacji, dobrać regulator i jego nastawy, potrafi zaprojektować układ przekaźnikowo-stycznikowy i zaimplementować złożony układ cyfrowy jak również algorytmy sterowania z wykorzystaniem sterowników PLC. | IS_2A_U05, IS_2A_U10, IS_2A_U12 | T2A_U05, T2A_U09, T2A_U11 | InzA2_U02 | C-4, C-5, C-6 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-7, T-W-8, T-W-6, T-W-5 | M-2, M-3 | S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IS_2A_S2/D/AZE/9_K01 Świadomie rozumie potrzeby dokształcania się, gdyż kolejne generacje rozwiązań sprzętowych będą wnosiły nowy zakres wiedzy. | IS_2A_K01, IS_2A_K02, IS_2A_K05 | T2A_K03, T2A_K04, T2A_K06 | InzA2_K02 | C-1, C-2, C-3, C-4, C-5, C-6 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-7, T-W-8, T-W-6, T-W-5 | M-1, M-2, M-3 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IS_2A_S2/D/AZE/9_W01 W odniesieniu do wybranego punktu programu kierunku studiów: student powinien znać podstawowe pojęcia związane z automatyką, scharakteryzować budowę i działanie układu regulacji automatycznej, znać podstawowe techniki badań i projektowania układów regulacji, powinien scharakteryzować budowę i działanie układów regulacji cyfrowej, ze szczególnym uwzględnieniem sterowników programowalnych PLC. | 2,0 | Student nie opanował podstawowej wiedzy z zakresu przedmiotu. |
3,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy. | |
3,5 | Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0. | |
4,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania. | |
4,5 | Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0. | |
5,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IS_2A_S2/D/AZE/9_U01 Student posiada umiejętność dokonywania analizy funkcjonalnej rzeczywistego układu regulacji, umie zbadać własności układu regulacji, dobrać regulator i jego nastawy, potrafi zaprojektować układ przekaźnikowo-stycznikowy i zaimplementować złożony układ cyfrowy jak również algorytmy sterowania z wykorzystaniem sterowników PLC. | 2,0 | Nie potrafi poprawnie rozwiązywać projektu. Przy wykonywaniu projektu nie potrafi wyjaśnić sposobu działania i ma problem z formułowaniem wniosków. |
3,0 | Student rozwiązuje podstawowe zadania. Popełnia błędy. Projekt realizuje poprawnie ale w sposób bierny. | |
3,5 | Student posiadł umiejętność w stopniu pośrednim między 3,0 a 4,0. | |
4,0 | Student umiejętnie kojarzy i analizuje nabytą wiedzę. Projekt praktyczne realizuje poprawnie, jest aktywny i potrafi interpretować uzyskane wyniki. | |
4,5 | Student posiadł umiejętność w stopniu pośrednim między 4,0 a 5,0. | |
5,0 | Student bardzo dobrze kojarzy i analizuje nabytą wiedzę. Zadania rozwiązuje metodami optymalnymi posiłkując się właściwymi technikami obliczeniowymi. Projekt realizuje wzorowo, jest aktywny i potrafi ocenić metodę i uzyskane wyniki. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IS_2A_S2/D/AZE/9_K01 Świadomie rozumie potrzeby dokształcania się, gdyż kolejne generacje rozwiązań sprzętowych będą wnosiły nowy zakres wiedzy. | 2,0 | Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów. Przy wykonywaniu ćwiczeń praktycznych w zespołach nie angażuje się na rozwiązywanie zadań. |
3,0 | Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań problemowych, obliczeniowych czy symulacjach. | |
3,5 | ||
4,0 | Ujawnia swą aktywną rolę w zespołowym przygotowywaniu prezentacji wyników, obliczeń czy przeprowadzonej symulacji. | |
4,5 | ||
5,0 | Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu postawionych problemów. Student czynnie uczestniczy w pracach zespołowych. |
Literatura podstawowa
- Urbaniak A., Podstawy automatyki, Wydawnictwo Politechniki Poznańskiej, Poznań, 2007, 978-83-7143-335-1
- Greblicki W., Podstawy automatyki, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006
- Horla D., Podstawy automatyki : ćwiczenia laboratoryjne, Wydawnictwo Politechniki Poznańskiej, oznań, 2005, 83-7143-533-9
- Gessing R., Podstawy automatyki, Politechnika Śląska, Gliwice, 2001, 83-88000-19-5
Literatura dodatkowa
- A. Markowski, J. Kostro, A. Lewandowski, Automatyka w pytaniach i odpowiedziach, Wydawnictwo Naukowo Techniczne, Warszawa, 1985
- W. Findeisen, Poradnik inżyniera automatyka, Wydawnictwo Naukowo-Techniczne, Warszawa, 1973
- Legierski T., Kasprzyk J., Wyrwał J., Hajda J., Programowanie sterowników PLC., Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 1998