Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | ENE_1A_C09-1_U01 | Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | ENE_1A_U01 | Umie wykorzystać prawa teoretyczne i metody eksperymentalne w analizie różnych procesów fizycznych i chemicznych |
---|
ENE_1A_U06 | Umie dobrać materiał konstrukcyjny i eksploatacyjny oraz techniki połączeń do warunków pracy urządzenia, układu lub systemu energetycznego |
ENE_1A_U14 | Umie dobrać przyrządy, aparaturę kontrolno-pomiarową i metodę pomiaru charakterystycznych parametrów pracy urządzania i systemu energetycznego |
ENE_1A_U21 | Umie korzystać z literatury, baz danych i innych źródeł; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie |
Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | T1A_U01 | potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie |
---|
T1A_U04 | potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów |
T1A_U05 | ma umiejętność samokształcenia się |
T1A_U06 | ma umiejętności językowe w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów, zgodne z wymaganiami określonymi dla poziomu B2 Europejskiego Systemu Opisu Kształcenia Językowego |
T1A_U08 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
T1A_U09 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
T1A_U13 | potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
T1A_U14 | potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów |
T1A_U16 | potrafi - zgodnie z zadaną specyfikacją - zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi |
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | InzA_U01 | potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski |
---|
InzA_U02 | potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne |
InzA_U05 | potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi |
InzA_U06 | potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów |
InzA_U08 | potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi |
Cel przedmiotu | C-1 | Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z inżynierii powierzchni i korozji materiałów. |
---|
C-2 | Student zdobywa wiedzę i umiejętność metod doboru materiałów i/lub metod ochrony elementów urządzeń i/lub konstrukcji do wymagań eksploatacyjnych. |
C-3 | Student zdobywa umiejętność analizy i opracowania wyników i pomiarów chemicznych i elektrochemicznych. |
C-4 | Student zdobywa umiejętość korzystania ze źródeł literatury. |
C-5 | Student zdobywa umiejętności pracy w zespole. |
Treści programowe | T-W-1 | Właściwości eksploatacyjne warstw powierzchniowych. Powłoki ochronne: rodzaje i właściwości. Metody wytwarzania i oceny powłok ochronnych. Negatywne skutki eksploatacji materiałów i ich wpływ na właściwości materiałów oraz na środowisko naturalne. Klasyfikacja zjawisk korozyjnych. Warstwy pasywne. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Korozja elektrochemiczna. Elektrokorozja. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Materiały w ochronie przed korozją: metale i stopy, niemetale, tworzywa termoplastyczne i termoutwardzalne, ceramika, stopy nanostrukturalne, nanokompozyty ceramiczne i metaliczne. Zapobieganie korozji na etapie projektowania. |
---|
T-L-1 | Metody pomiaru grubości powłok: mikroskopowa, warstwomierze nowej generacji. Badanie szczelnoości powłok metalicznych. Niklowanie chemiczne stali. Cynkowanie elektrochemiczne. Fluidyzacyjne nanoszenie powłok z tworzyw sztucznych.
Szereg elektrochemiczny metali. Ogniwa galwaniczne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Badania impedancyjne w ocenie stopnia barierowości powłok antykorozyjnych. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu. |
Metody nauczania | M-1 | Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe. |
---|
M-3 | Ćwiczenia laboratoryjne. Analiza wyników eksperymentów połączona z dyskusją dydaktyczną (okrągłego stołu). Prezentacje sprawozdań z przeprowadzonej analizy. |
M-2 | Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. |
Sposób oceny | S-2 | Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie ćwiczenia. |
---|
S-1 | Ocena formująca: Ćwiczenia laboratoryjne : Na podstawie krótkich sprawdzianów wiedzy przygotowanej do ćwiczeń (14 sprawdzianów) student uzyskuje ocenę z ćwiczenia. |
S-3 | Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuję po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok. 50% punktów z zaliczenia pisemnego. Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6). |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie potrafi wskazać odpornego materiału i/lub sposobu ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. |
3,0 | Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. |
3,5 | Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. Student potrafi opisać objawy korozji materiału konstrukcyjnego. |
4,0 | Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego. |
4,5 | Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji w stopniu zaawansowanym. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego i zaproponować metodę badania i/lub monitorowania właściwości materiału w warunkach eksploatacyjnych. |
5,0 | Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji w stopniu zaawansowanym. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego w stopniu zaawansowanym. |