Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (N2)
specjalność: automatyzacja procesów wytwarzania

Sylabus przedmiotu Projektowanie i badanie symulacyjne inteligentnych systemów wytwarzania:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Projektowanie i badanie symulacyjne inteligentnych systemów wytwarzania
Specjalność komputerowo wspomagane projektowanie i wytwarzanie maszyn
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Andrzej Jardzioch <Andrzej.Jardzioch@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 5 Grupa obieralna 3

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP3 5 1,00,44zaliczenie
wykładyW3 10 2,00,56zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza o systemach produkcyjnych

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Projektowanie oraz modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu do budowy modelu sterowania pracą systemu przemysłowego.5
5
wykłady
T-W-1Podstawowe pojęcia teorii systemów i modelowania. Systemy wytwarzania – podstawowe zadania badawcze.2
T-W-2Metodyka modelowania symulacyjnego systemów wytwarzania. Identyfikacja zadań badawczych. Model opisowy, teoriomnogościowy, matematyczny. Zasady budowy modelu algorytmicznego.2
T-W-3Podstawowe pojęcia z teorii masowej obsługi. Zasady budowy, testowania i weryfikacji modelu symulacyjnego. Zasady prowadzenia badań eksperymentalnych metodą symulacji komputerowej. Elementy teorii Sieci Petriego. Podstawowe definicje Sieci Petriego.2
T-W-4Modelowanie współbieżnej realizacji procesów produkcyjnych. Modelowanie przepływu przedmiotów w systemach wytwarzania. Przykłady zastosowanie Sieci Petriego do modelowania systemów.2
T-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.2
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Opracowanie i prezentacja sprawozdań25
A-P-2uczestnictwo w zajęciach5
30
wykłady
A-W-1Studiowanie literatury44
A-W-2Przygotowanie się do zaliczenia6
A-W-3uczestnictwo w zajęciach10
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające w postaci wykładu informacyjnego.
M-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Zaliczenie opracowanych sprawozdań z ćwiczeń laboratoryjnych
S-2Ocena podsumowująca: Zaliczenie pisemne lub ustne obejmujące zakres tematyczny wykładów i ćwiczeń
S-3Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_KWP/09-5_W01
Student zna metody projektowania i badań symulacyjnych procesów produkcyjnych.
MBM_2A_W03T2A_W02C-1T-W-1, T-W-2, T-W-3, T-W-4M-1S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_KWP/09-5_U01
Student umie opracować projekt systemu wytwarzania, komputerowy model procesów produkcyjnych oraz dokonać analizy.
MBM_2A_U07T2A_U07C-1T-P-1, T-W-5M-2S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_2A_KWP/09-5_K01
Właściwa postawa i motywacja do pracy w grupie.
MBM_2A_K03T2A_K03C-1T-P-1M-2S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
MBM_2A_KWP/09-5_W01
Student zna metody projektowania i badań symulacyjnych procesów produkcyjnych.
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy. Czasem nie wie jak ją wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z akresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
MBM_2A_KWP/09-5_U01
Student umie opracować projekt systemu wytwarzania, komputerowy model procesów produkcyjnych oraz dokonać analizy.
2,0Student opanował umiejętności z zakresu przedmiotu.
3,0Student rozwiązuje podstwowe zadania. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Student ma dobre umiejętności kojarzenia i analizy nabytej wiedzy. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować uzyskane wyniki.
4,5Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Student ma bardzo dobre umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i uzyskane wyniki.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
MBM_2A_KWP/09-5_K01
Właściwa postawa i motywacja do pracy w grupie.
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów oraz prowadzenia ćwiczeń zespołowych ukierunkowanych na rozwiązywanie zadań obliczeniowych symulujących zmiany w przebiegu procesu produkcji.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań obliczeniowych symulujących zmiany w przebiegu procesu produkcji.
3,5Student posiadł kompetencje w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu i prezentacji rozwiązań zadań na ćwiczeniach i zespołowych konsultacjach.
4,5Student posiadł kompetencje w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu zadań w analizie decyzyjnej w zakresie planowania i sterowania przebiegiem produkcji prototypowej oraz planowania operatywnego i sterowania przebiegiem produkcji seryjnej.

Literatura podstawowa

  1. Banaszak Z. Jamplolski L.:, Komputerowo wspomagane modelowanie elastycznych systemów produkcyjnych., WNT, Warszawa, 1999
  2. Ryszard Zdanowicz, Modelowanie i symulacja procesów wytwarzania, Politechniki Śląskiej, Gliwice, 2007

Literatura dodatkowa

  1. Marcin Szpyrka, Sieci Petriego w modelowaniu i analizie systemów współbieżnych, WNT, Warszawa, 2008

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Projektowanie oraz modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu do budowy modelu sterowania pracą systemu przemysłowego.5
5

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia teorii systemów i modelowania. Systemy wytwarzania – podstawowe zadania badawcze.2
T-W-2Metodyka modelowania symulacyjnego systemów wytwarzania. Identyfikacja zadań badawczych. Model opisowy, teoriomnogościowy, matematyczny. Zasady budowy modelu algorytmicznego.2
T-W-3Podstawowe pojęcia z teorii masowej obsługi. Zasady budowy, testowania i weryfikacji modelu symulacyjnego. Zasady prowadzenia badań eksperymentalnych metodą symulacji komputerowej. Elementy teorii Sieci Petriego. Podstawowe definicje Sieci Petriego.2
T-W-4Modelowanie współbieżnej realizacji procesów produkcyjnych. Modelowanie przepływu przedmiotów w systemach wytwarzania. Przykłady zastosowanie Sieci Petriego do modelowania systemów.2
T-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.2
10

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Opracowanie i prezentacja sprawozdań25
A-P-2uczestnictwo w zajęciach5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Studiowanie literatury44
A-W-2Przygotowanie się do zaliczenia6
A-W-3uczestnictwo w zajęciach10
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_KWP/09-5_W01Student zna metody projektowania i badań symulacyjnych procesów produkcyjnych.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_W03ma szczegółową wiedzę z wybranych zagadnień pokrewnych kierunków studiów powiązanych z obszarem studiowanej specjalności
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W02ma szczegółową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
Cel przedmiotuC-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.
Treści programoweT-W-1Podstawowe pojęcia teorii systemów i modelowania. Systemy wytwarzania – podstawowe zadania badawcze.
T-W-2Metodyka modelowania symulacyjnego systemów wytwarzania. Identyfikacja zadań badawczych. Model opisowy, teoriomnogościowy, matematyczny. Zasady budowy modelu algorytmicznego.
T-W-3Podstawowe pojęcia z teorii masowej obsługi. Zasady budowy, testowania i weryfikacji modelu symulacyjnego. Zasady prowadzenia badań eksperymentalnych metodą symulacji komputerowej. Elementy teorii Sieci Petriego. Podstawowe definicje Sieci Petriego.
T-W-4Modelowanie współbieżnej realizacji procesów produkcyjnych. Modelowanie przepływu przedmiotów w systemach wytwarzania. Przykłady zastosowanie Sieci Petriego do modelowania systemów.
Metody nauczaniaM-1Metody podające w postaci wykładu informacyjnego.
Sposób ocenyS-1Ocena formująca: Zaliczenie opracowanych sprawozdań z ćwiczeń laboratoryjnych
S-2Ocena podsumowująca: Zaliczenie pisemne lub ustne obejmujące zakres tematyczny wykładów i ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Nie potrafi kojarzyć i analizować nabytej wiedzy. Czasem nie wie jak ją wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z akresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_KWP/09-5_U01Student umie opracować projekt systemu wytwarzania, komputerowy model procesów produkcyjnych oraz dokonać analizy.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
Cel przedmiotuC-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.
Treści programoweT-P-1Projektowanie oraz modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu do budowy modelu sterowania pracą systemu przemysłowego.
T-W-5Modelowanie systemów sterowania produkcją. Przykłady komputerowych systemów do modelowania i symulacji procesów wytwarzania.
Metody nauczaniaM-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.
Sposób ocenyS-1Ocena formująca: Zaliczenie opracowanych sprawozdań z ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Student opanował umiejętności z zakresu przedmiotu.
3,0Student rozwiązuje podstwowe zadania. Popełnia pomyłki w obliczeniach. Ćwiczenia praktyczne realizuje poprawnie, ale w sposób bierny.
3,5Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Student ma dobre umiejętności kojarzenia i analizy nabytej wiedzy. Ćwiczenia praktyczne realizuje poprawnie, jest aktywny, potrafi interpretować uzyskane wyniki.
4,5Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Student ma bardzo dobre umiejętności kojarzenia i analizy nabytej wiedzy. Zadania rozwiązuje metodami optymalnymi. Potrafi wykorzystywać właściwe techniki komputerowe. Ćwiczenia praktyczne realizuje wzorowo, w sposób aktywny, potrafi ocenić metodę i uzyskane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaMBM_2A_KWP/09-5_K01Właściwa postawa i motywacja do pracy w grupie.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_2A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
Cel przedmiotuC-1Nabycie wiedzy dotyczącej procesów przebiegających w systemach wytwarzania. Nabycie wiedzy o metodach modelowania systemów wytwarzania. Nabycie umiejętności modelowania procesów produkcyjnych.
Treści programoweT-P-1Projektowanie oraz modelowanie zrobotyzowanego systemu wytwarzania z zastosowaniem sieci Petri. Wykorzystanie komputerowego systemu do budowy modelu sterowania pracą systemu przemysłowego.
Metody nauczaniaM-2Praktyczne ćwiczenia związane z modelowaniem procesów wytwarzania.
Sposób ocenyS-3Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty.
Kryteria ocenyOcenaKryterium oceny
2,0Ujawnia brak zdyscyplinowania w trakcie słuchania i notowania wykładów oraz prowadzenia ćwiczeń zespołowych ukierunkowanych na rozwiązywanie zadań obliczeniowych symulujących zmiany w przebiegu procesu produkcji.
3,0Ujawnia mierne zaangażowanie się w pracy zespołowej przy rozwiązywaniu zadań obliczeniowych symulujących zmiany w przebiegu procesu produkcji.
3,5Student posiadł kompetencje w stopniu pośrednim, między oceną 3,0 i 4,0.
4,0Ujawnia swą aktywną rolę w zespołowym przygotowywaniu i prezentacji rozwiązań zadań na ćwiczeniach i zespołowych konsultacjach.
4,5Student posiadł kompetencje w stopniu pośrednim, między oceną 4,0 i 5,0.
5,0Ujawnia własne dążenie do doskonalenia nabywanych umiejętności współpracy w zespole przy rozwiązywaniu zadań w analizie decyzyjnej w zakresie planowania i sterowania przebiegiem produkcji prototypowej oraz planowania operatywnego i sterowania przebiegiem produkcji seryjnej.