Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Transport (S1)
specjalność: inżynieria środowiska w transporcie

Sylabus przedmiotu Wytrzymałość materiałów:

Informacje podstawowe

Kierunek studiów Transport
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Wytrzymałość materiałów
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Mechaniki i Podstaw Konstrukcji Maszyn
Nauczyciel odpowiedzialny Ryszard Kawiak <Ryszard.Kawiak@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 15 1,30,26zaliczenie
ćwiczenia audytoryjneA2 15 1,30,30zaliczenie
wykładyW2 30 2,40,44egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza i umiejętności z matematyki z zakresu programu liceum.
W-2Wiedza i umiejętności z fizyki z zakresu programu liceum.
W-3Wiedza i umiejętności z mechaniki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawowymi pojęciami i wielkościami stosowanymi w wytrzymałości materiałów.
C-2Omówienie przyczyn powstawania odkształceń i naprężeń.
C-3Zapoznanie studentów z podstawowymi warunkami wytrzymałościowymi i sztywnościowymi wykorzystywanymi w procesie projektowania elementów maszyn i konstrukcji.
C-4Zapoznanie studentów z podstawami stateczności prętów ściskanych (wyboczenie).
C-5Ukształtowanie umiejętności wyznaczania odkształceń, naprężeń, nośności i wymiarów elementów rozciąganych, ściskanych, ścinanych, skręcanych i zginanych.
C-6Ukształtowanie umiejętności wyznaczania sił i naprężeń krytycznych w prętach ściskanych.
C-7Zapoznanie studentów z podstawami wytrzymałości złożonej i ukształtowanie umiejętności wyznaczania wymiarów wałów jednocześnie skręcanych i zginanych.
C-8Zapoznanie studentów z metodą obliczeń wytrzymałościowych cienkościennych osiowo-symetrycznych zbiorników.
C-9Omówienie metod badania własności wytrzymałościowych materiałów.
C-10Ukształtowanie umiejętności korzystania z norm w czasie prowadzenia badań doświadczalnych oraz umiejętności opracowania i dyskusji wyników tych badań.
C-11Ukształtowania umiejętności opracowywania sprawozdań z badań wytrzymałościowych materiałów.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Obliczanie odkształceń, naprężeń i wymiarów prętów rozciąganych lub ściskanych w układach statycznie wyznaczalnych.2
T-A-2Obliczanie odkształceń i naprężeń wywołanych zmianą temperatur.1
T-A-3Obliczanie odkształceń, naprężeń prętów rozciąganych lub ściskanych w układach statycznie niewyznaczalnych.1
T-A-4Zastosowanie warunku wytrzymałościowego do obliczania elementów ścinanych.1
T-A-5Obliczanie wskaźników wytrzymałości przekrojów.1
T-A-6Zastosowanie warunku wytrzymałościowego i sztywnościowego do obliczania skręcanych elementów o przekroju osiowo-symetrycznym.2
T-A-7Kolokwium z zakresu wytrzymałości elementów rozciąganych, ściskanych, ścinanych i skręcanych.1
T-A-8Zastosowanie warunku wytrzymałościowego na zginanie do obliczania belek.2
T-A-9Obliczanie sił i naprężeń krytycznych dla prętów ściskanych siłą poosiową.1
T-A-10Obliczenia wytrzymałościowe wałów jednocześnie zginanych i skręcanych2
T-A-11Kolokwium z zakresu zginania, wyboczenia i wytrzymałości złożonej.1
15
laboratoria
T-L-1Zajęcia wprowadzające: regulamin laboratorium, normy, ogólna charakterystyka materiałów, obciążeń, maszyn wytrzymałościowych.1
T-L-2Statyczna próba rozciągania.2
T-L-3Pomiar twardości sposobami Brinella, Vickersa i Rockwella.2
T-L-4Próba udarności sposobem Charpy'ego.1
T-L-5Statyczna próba ściskania oraz próba ścinania technologicznego.1
T-L-6Kolokwium dotyczące prób rozciągania, twardości, udarności. ściskania i ścinania.1
T-L-7Wyznaczanie sił krytycznych dla prętów ściskanych siłą poosiową.1
T-L-8Wznaczanie odkształceń (naprężeń) metodą tensometrii oporowej.2
T-L-9Badanie wytrzymałości zmęczeniowej metodą Wohlera.2
T-L-10Wybrane próby technologiczne.1
T-L-11Kolokwium z zakresu wyboczenia, pomiarów tensometrycznych, wytrzymałości zmęczeniowej i prób technologicznych.1
15
wykłady
T-W-1Wiadomości wstępne: podstawowe pojęcia, podstawy wytrzymałości materiałów, siły wewnętrzne, naprężenia, odkształcenia.3
T-W-2Rozciąganie i ściskanie prętów: warunki wytrzymałościowy i sztywnościowy na rozciąganie i ściskanie.3
T-W-3Odkształcenia i naprężenia wywołane zmianą temperatyry.2
T-W-4Ścinanie, naciski powierzchniowe: warunki wytrzymałościowe.2
T-W-5Momenty bezwładności płaskich przekrojów brył: definicje momentu bezwładności i momentu odśrodkowego, twierdzenie Steinera, główne osie i momenty bezwładności.3
T-W-6Skręcanie elementów maszyn o przekroju kołowym: warunki wytrzymałościowy i sztywnościowy na skręcanie.3
T-W-7Zginanie belek: wykresy momentów zginających i sił tnących, wskaźnik wytrzymałości przekroju, warunek wytrzymałościowych na zginanie.3
T-W-8Ugięcia belek: ugięcie kątowe i liniowe belki, różniczkowe równanie osi ugiętej belki, warunki brzegowe.2
T-W-9Wyboczenie prętów sciskanych siłą osiowa: naprężenia krytyczne w przypadku wyboczenia sprężystego i sprężysto-plastycznego.3
T-W-10Wytężenie materiałów: stan naprężenia, stan odkształcenia, wytężenie, naprężenia redukowane, hipotezy wytężeniowe.2
T-W-11Wybrane przypadki wytrzymałości złożonej: mimośrodowe zginanie, jednoczesne zginanie ze skręcaniem.2
T-W-12Zbiorniki cienkościenne osiowosymetryczne.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestniczenie w ćwiczeniach.15
A-A-2Rozwiązywanie zadań ze wskazanych zbiorów zadań.12
A-A-3Przygotowanie się do sprawdzianów i kolokwiów.12
39
laboratoria
A-L-1Uczestniczenie w ćwiczeniach laboratoryjnych.15
A-L-2Opracowanie sprawozdań z wykonanych ćwiczeń laboratoryjnych.20
A-L-3Przygotowanie się do kolokwiów.5
40
wykłady
A-W-1Uczestniczenie w wykładach.30
A-W-2Czytanie wskazanej literatury.22
A-W-3Przygotowanie się do egzaminu.20
72

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2Objaśnienia.
M-3Ćwiczenia problemowe.
M-4Ćwiczenia laboratoryjne.
M-5Z użyciem maszyn dydaktycznych.
M-6Pokaz.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Na podstawie identyfikacji braków w wiedzy i umiejętnościach, prowadzonej w czasie ćwiczeń audytoryjnych i laboratoryjnych.
S-2Ocena formująca: Na podstawie sprawdzianów.
S-3Ocena podsumowująca: Na podstawie wyników kolokwiów.
S-4Ocena podsumowująca: Na podstawie wyniku egzaminu pisemnego i ustnego.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
T_1A_B20_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie: - wymienić i objaśnić podstawowe pojęcia wytrzymałości materiałów, - nazwać i definiować podstawowe wielkości wytrzymałości materiałów, - omówić zjawiska zachodzące w elementach maszyn i konstrukcji pod wpływem obciążeń, - rozpoznawać stany naprężeń i odkształceń w elementach maszyn i konstrukcji, - objaśniać sposób wyznaczania sił i momentów wewnętrznych (siły rozciągające, ściskające i ścinające, momenty zginające i skręcające), - podać i omówić warunki wytrzymałościowe i sztywnościowe, - zaproponować sposób wyznaczania odkształceń, naprężeń (w tym redukowanych i krytycznych), wymiarów i nośności elementów maszyn i konstrukcji, - omówić problem wytrzymałości cienkościennych zbiorników.
T_1A_W02, T_1A_W03T1A_W01, T1A_W03, T1A_W04C-2, C-1, C-4, C-9, C-8, C-7, C-3T-W-11, T-L-5, T-L-3, T-W-12, T-W-1, T-L-8, T-W-7, T-W-2, T-W-3, T-W-6, T-W-8, T-L-4, T-L-7, T-L-6, T-L-10, T-L-9, T-W-9, T-W-4, T-A-11, T-L-2, T-W-10, T-W-5, T-L-1, T-L-11M-1, M-2, M-3, M-4, M-5, M-6S-4

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
T_1A_B20_U01
W wyniku przeprowadzonych zajęć student powinien umieć: - korzystać z literatury i wskazanych źródeł, - dobrać i zastosować odpowiednią metodę rozwiązania zadania wytrzymałościowego z zakresu tematów zrealizowanych na wykładach, - obliczać odkształcenia i naprężenia w prętach rozciąganych i ściskanych układów statycznie wyznaczalnych i niewyznaczalnych, wyznaczać wymiary tych prętów, - obliczać odkształcenia i naprężenia cieplne elementów maszyn i konstrukcji, - wyznaczać wymiary elementów zginanych i skręcanych, - wyznaczać wymiary wałów jednocześnie skręcanych i zginanych, - obliczać siły krytyczne dla prętów ściskanych siłą poosiową, - dobrać próbki do podstawowych prób wytrzymałościowych, - wykonać podstawowe próby wytrzymałościowe pod nadzorem nauczyciela, - zinterpretować otrzymane wyniki prób wytrzymałościowych, - wyciągnąć wnioski z prób wytrzymałościowych materiałów konstrukcyjnych.
T_1A_U01, T_1A_U04T1A_U01, T1A_U05C-2, C-1, C-4, C-9, C-8, C-10, C-6, C-7, C-5, C-3, C-11T-A-2, T-A-5, T-A-6, T-L-11, T-L-7, T-A-8, T-L-1, T-A-3, T-L-2, T-L-10, T-L-5, T-A-9, T-A-7, T-L-3, T-L-4, T-L-6, T-L-9, T-L-8, T-A-10, T-A-11, T-A-4, T-A-1M-1, M-2, M-3, M-4, M-5, M-6S-2, S-3, S-4, S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
T_1A_B20_K01
W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: - świadomość ważności wiedzy z zakresu wytrzymałości materiałów dla procesu projektowania elementów maszyn i konstrukcji (pojazdów samochodowych), - świadomość w wyborze odpowiednich metod rozwiązywania zadań wytrzymałości materiałów, - dbałość o poprawność wykonywanych działań, - zdolność do oceny otrzymywanych wyników, - otwartość na współpracy niezbędną przy większych projektach, - zorientowanie na ciągłe poszerzanie własnej wiedzy i umiejętności.
T_1A_K01, T_1A_K03T1A_K01, T1A_K03, T1A_K04C-2, C-1, C-4, C-9, C-8, C-10, C-6, C-7, C-5, C-3, C-11T-L-8, T-L-10, T-L-6, T-L-11, T-L-4, T-L-2, T-L-3, T-L-7, T-L-1, T-L-5, T-L-9M-1, M-2, M-3, M-4, M-5, M-6S-4

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
T_1A_B20_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie: - wymienić i objaśnić podstawowe pojęcia wytrzymałości materiałów, - nazwać i definiować podstawowe wielkości wytrzymałości materiałów, - omówić zjawiska zachodzące w elementach maszyn i konstrukcji pod wpływem obciążeń, - rozpoznawać stany naprężeń i odkształceń w elementach maszyn i konstrukcji, - objaśniać sposób wyznaczania sił i momentów wewnętrznych (siły rozciągające, ściskające i ścinające, momenty zginające i skręcające), - podać i omówić warunki wytrzymałościowe i sztywnościowe, - zaproponować sposób wyznaczania odkształceń, naprężeń (w tym redukowanych i krytycznych), wymiarów i nośności elementów maszyn i konstrukcji, - omówić problem wytrzymałości cienkościennych zbiorników.
2,0Student nie zna podstawowych pojęć, wielkości i praw wytrzymałości materiałów, nie umie wykorzystać podstawowych narzędzi do rozwiązywania zadań.
3,0Student zna większość podstawowych pojęć, wielkości i praw wytrzymałości materiałów, umie wykorzystać wybrane podstawowych narzędzi do rozwiązywania zadań.
3,5Student zna podstawowych pojęć, wielkości i praw wytrzymałości materiałów, stusuje właściwe narzędzia do rozwiązywania zadań, popełnia drobne błędy i pomyłki.
4,0Student zna podstawowe pojęcia, wielkości i prawa wytrzymałości materiałów, wykorzystuje w sposób poprawny wszystkie poznane narzędzia.
4,5Student zna podstawowe pojęcia, wielkości i prawa wytrzymałości materiałów, wykorzystuje w sposób poprawny wszystkie poznane w trakcie zajęć narzędzia, potrafi przeprowadzić dyskusję otrzymanych wyników.
5,0Student zna podstawowe pojęcia, wielkości i prawa wytrzymałości materiałów, potrafi wykorzystać wszystkie zaproponowane w trakcie zajęć narzędzia, potrafi porównać ich efektywność, a także samodzielnie identyfikować narzędzia potrzebne do rozwiązywania zadanego problemu z jednoczesnym uzasadnieniem wyboru, potrafi przeprowadzić dyskusję otrzymanych wyników.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
T_1A_B20_U01
W wyniku przeprowadzonych zajęć student powinien umieć: - korzystać z literatury i wskazanych źródeł, - dobrać i zastosować odpowiednią metodę rozwiązania zadania wytrzymałościowego z zakresu tematów zrealizowanych na wykładach, - obliczać odkształcenia i naprężenia w prętach rozciąganych i ściskanych układów statycznie wyznaczalnych i niewyznaczalnych, wyznaczać wymiary tych prętów, - obliczać odkształcenia i naprężenia cieplne elementów maszyn i konstrukcji, - wyznaczać wymiary elementów zginanych i skręcanych, - wyznaczać wymiary wałów jednocześnie skręcanych i zginanych, - obliczać siły krytyczne dla prętów ściskanych siłą poosiową, - dobrać próbki do podstawowych prób wytrzymałościowych, - wykonać podstawowe próby wytrzymałościowe pod nadzorem nauczyciela, - zinterpretować otrzymane wyniki prób wytrzymałościowych, - wyciągnąć wnioski z prób wytrzymałościowych materiałów konstrukcyjnych.
2,0Student nie umie wykorzystać podstawowych narzędzi do rozwiazywania zadań wytrzymałości materiałów.
3,0Student umie wykorzystać tylko niektóre z poznanych narzędzi do rozwiazywania zadań wytrzymałości materiałów, popełnia drobne pomyłki.
3,5Student umie poprawnie korzystać z wszystkich poznanych narzędzi w czasie rozwiazywania zadań wytrzymałości materiałów.
4,0Student umie korzystać w sposób optymalny z wszystkich poznanych narzedzi przy rozwiazywaniu zadań.
4,5Student umie korzystać w sposób optymalny z wszystkich poznanych narzedzi przy rozwiazywaniu zadań, potrafi przeprowadzić dyskusję wyników.
5,0Student umie korzystać w sposób optymalny z wszystkich poznanych narzedzi przy rozwiazywaniu zadań, potrafi przeprowadzić dyskusję wyników, oraz ocenić efektywność zastosowanych narzędzi.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
T_1A_B20_K01
W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: - świadomość ważności wiedzy z zakresu wytrzymałości materiałów dla procesu projektowania elementów maszyn i konstrukcji (pojazdów samochodowych), - świadomość w wyborze odpowiednich metod rozwiązywania zadań wytrzymałości materiałów, - dbałość o poprawność wykonywanych działań, - zdolność do oceny otrzymywanych wyników, - otwartość na współpracy niezbędną przy większych projektach, - zorientowanie na ciągłe poszerzanie własnej wiedzy i umiejętności.
2,0Srudent nie ma świadomości ważności wiedzy z zakresu wytrzymałości materiałów w procesie projektowania elementów maszyn, nie ma dbałości o poprawność wykonywanych działań.
3,0Srudent ma świadomości ważności wiedzy z zakresu wytrzymałości materiałów w procesie projektowania elementów maszyn oraz świadomość znaczenia wyboru odpowiednich metod rozwiązywania zadań.
3,5Student spełnia wymagania na ocenę 3,0 i dodatkowo wykazuje dbałość o poprawność wykonywanych działań.
4,0Student spełnia wymagania na ocenę 3,5 i dodatkowo wykazuje zdolność do oceny otrzymywanych wyników.
4,5Student spełnia wymagania na ocenę 4,0 i dodatkowo wykazuje otwartość na współpracę w zespole.
5,0Student spełnia wymagania na ocenę 4,5 i dodatkowo jest zorientowany na ciągłe podnoszenie własnej wiedzy i umiejętności.

Literatura podstawowa

  1. Jakubowicz A., Orłoś Z., Wytrzymałość materiałów., WNT, Warszawa, 1985, (i wydania późniejsze)
  2. Ostwald M., Podstawy wytrzymałości materiałów., WPP, Poznań, 1997, (i wydania późniejsze)
  3. Jastrzembski P., Mutermilch J., Orłowski W., Wytrzymałość materiałów. (tom 1i 2), Arkady, Warszawa, 1986, (i wydania późniejsze)

Literatura dodatkowa

  1. Niezgodziński M. E., Niezgodziński T., Wzory, wykresy i tablice wytrzymałościowe., WNT, Warszawa, 1996, (i wydania późniejsze)
  2. Banasiak M., Grossman K., Trombski M., Zbiór zadań z wytrzymałości materiałów, PWN, Warszawa, 1999, (i wydania późniejsze
  3. Kurowski R., Parszewski Z, Zbiór zadań z wytrzymałości materiałów., PWN, Warszawa, 1970, (i mwydania późniejsze)
  4. Lewiński J., Piekarski R., Wawrzyniak A., Witemberg-Perzyk D., Wytrzymałość materiałów w zadaniach., OW PW, Warszawa, 2009
  5. PKN, Normy PN, EN, ISO, PKN, Warszawa, 2012, (wydania obowiązujące)
  6. Bąk R., Burczyński T., Wytrzymałość materiałów z elementani ujęcia komputerowego, WNT, Warszawa, 2001, (i wydania późniejsze)

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Obliczanie odkształceń, naprężeń i wymiarów prętów rozciąganych lub ściskanych w układach statycznie wyznaczalnych.2
T-A-2Obliczanie odkształceń i naprężeń wywołanych zmianą temperatur.1
T-A-3Obliczanie odkształceń, naprężeń prętów rozciąganych lub ściskanych w układach statycznie niewyznaczalnych.1
T-A-4Zastosowanie warunku wytrzymałościowego do obliczania elementów ścinanych.1
T-A-5Obliczanie wskaźników wytrzymałości przekrojów.1
T-A-6Zastosowanie warunku wytrzymałościowego i sztywnościowego do obliczania skręcanych elementów o przekroju osiowo-symetrycznym.2
T-A-7Kolokwium z zakresu wytrzymałości elementów rozciąganych, ściskanych, ścinanych i skręcanych.1
T-A-8Zastosowanie warunku wytrzymałościowego na zginanie do obliczania belek.2
T-A-9Obliczanie sił i naprężeń krytycznych dla prętów ściskanych siłą poosiową.1
T-A-10Obliczenia wytrzymałościowe wałów jednocześnie zginanych i skręcanych2
T-A-11Kolokwium z zakresu zginania, wyboczenia i wytrzymałości złożonej.1
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zajęcia wprowadzające: regulamin laboratorium, normy, ogólna charakterystyka materiałów, obciążeń, maszyn wytrzymałościowych.1
T-L-2Statyczna próba rozciągania.2
T-L-3Pomiar twardości sposobami Brinella, Vickersa i Rockwella.2
T-L-4Próba udarności sposobem Charpy'ego.1
T-L-5Statyczna próba ściskania oraz próba ścinania technologicznego.1
T-L-6Kolokwium dotyczące prób rozciągania, twardości, udarności. ściskania i ścinania.1
T-L-7Wyznaczanie sił krytycznych dla prętów ściskanych siłą poosiową.1
T-L-8Wznaczanie odkształceń (naprężeń) metodą tensometrii oporowej.2
T-L-9Badanie wytrzymałości zmęczeniowej metodą Wohlera.2
T-L-10Wybrane próby technologiczne.1
T-L-11Kolokwium z zakresu wyboczenia, pomiarów tensometrycznych, wytrzymałości zmęczeniowej i prób technologicznych.1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wiadomości wstępne: podstawowe pojęcia, podstawy wytrzymałości materiałów, siły wewnętrzne, naprężenia, odkształcenia.3
T-W-2Rozciąganie i ściskanie prętów: warunki wytrzymałościowy i sztywnościowy na rozciąganie i ściskanie.3
T-W-3Odkształcenia i naprężenia wywołane zmianą temperatyry.2
T-W-4Ścinanie, naciski powierzchniowe: warunki wytrzymałościowe.2
T-W-5Momenty bezwładności płaskich przekrojów brył: definicje momentu bezwładności i momentu odśrodkowego, twierdzenie Steinera, główne osie i momenty bezwładności.3
T-W-6Skręcanie elementów maszyn o przekroju kołowym: warunki wytrzymałościowy i sztywnościowy na skręcanie.3
T-W-7Zginanie belek: wykresy momentów zginających i sił tnących, wskaźnik wytrzymałości przekroju, warunek wytrzymałościowych na zginanie.3
T-W-8Ugięcia belek: ugięcie kątowe i liniowe belki, różniczkowe równanie osi ugiętej belki, warunki brzegowe.2
T-W-9Wyboczenie prętów sciskanych siłą osiowa: naprężenia krytyczne w przypadku wyboczenia sprężystego i sprężysto-plastycznego.3
T-W-10Wytężenie materiałów: stan naprężenia, stan odkształcenia, wytężenie, naprężenia redukowane, hipotezy wytężeniowe.2
T-W-11Wybrane przypadki wytrzymałości złożonej: mimośrodowe zginanie, jednoczesne zginanie ze skręcaniem.2
T-W-12Zbiorniki cienkościenne osiowosymetryczne.2
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestniczenie w ćwiczeniach.15
A-A-2Rozwiązywanie zadań ze wskazanych zbiorów zadań.12
A-A-3Przygotowanie się do sprawdzianów i kolokwiów.12
39
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestniczenie w ćwiczeniach laboratoryjnych.15
A-L-2Opracowanie sprawozdań z wykonanych ćwiczeń laboratoryjnych.20
A-L-3Przygotowanie się do kolokwiów.5
40
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestniczenie w wykładach.30
A-W-2Czytanie wskazanej literatury.22
A-W-3Przygotowanie się do egzaminu.20
72
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaT_1A_B20_W01W wyniku przeprowadzonych zajęć student powinien być w stanie: - wymienić i objaśnić podstawowe pojęcia wytrzymałości materiałów, - nazwać i definiować podstawowe wielkości wytrzymałości materiałów, - omówić zjawiska zachodzące w elementach maszyn i konstrukcji pod wpływem obciążeń, - rozpoznawać stany naprężeń i odkształceń w elementach maszyn i konstrukcji, - objaśniać sposób wyznaczania sił i momentów wewnętrznych (siły rozciągające, ściskające i ścinające, momenty zginające i skręcające), - podać i omówić warunki wytrzymałościowe i sztywnościowe, - zaproponować sposób wyznaczania odkształceń, naprężeń (w tym redukowanych i krytycznych), wymiarów i nośności elementów maszyn i konstrukcji, - omówić problem wytrzymałości cienkościennych zbiorników.
Odniesienie do efektów kształcenia dla kierunku studiówT_1A_W02ma wiedzę w zakresie fizyki, obejmującą mechanikę, termodynamikę, fizykę ciała stałego, elektryczność i magnetyzm w tym niezbędną do zrozumienia podstawowych zjawisk fizycznych występujących w pojazdach samochodowych i ich otoczeniu
T_1A_W03ma uporządkowaną i podbudowaną teoretycznie wiedzę zakresie mechaniki, termodynamiki i elektrotechniki niezbędną do zrozumienia procesów zachodzących w silniku spalinowym, oddziaływań mechanicznych występujących w mechanizmach pojazdów samochodowych, zjawisk i procesów elektrycznych w zespołach pojazdu, oddziaływania otoczenia na pojazd
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W04ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Omówienie przyczyn powstawania odkształceń i naprężeń.
C-1Zapoznanie studentów z podstawowymi pojęciami i wielkościami stosowanymi w wytrzymałości materiałów.
C-4Zapoznanie studentów z podstawami stateczności prętów ściskanych (wyboczenie).
C-9Omówienie metod badania własności wytrzymałościowych materiałów.
C-8Zapoznanie studentów z metodą obliczeń wytrzymałościowych cienkościennych osiowo-symetrycznych zbiorników.
C-7Zapoznanie studentów z podstawami wytrzymałości złożonej i ukształtowanie umiejętności wyznaczania wymiarów wałów jednocześnie skręcanych i zginanych.
C-3Zapoznanie studentów z podstawowymi warunkami wytrzymałościowymi i sztywnościowymi wykorzystywanymi w procesie projektowania elementów maszyn i konstrukcji.
Treści programoweT-W-11Wybrane przypadki wytrzymałości złożonej: mimośrodowe zginanie, jednoczesne zginanie ze skręcaniem.
T-L-5Statyczna próba ściskania oraz próba ścinania technologicznego.
T-L-3Pomiar twardości sposobami Brinella, Vickersa i Rockwella.
T-W-12Zbiorniki cienkościenne osiowosymetryczne.
T-W-1Wiadomości wstępne: podstawowe pojęcia, podstawy wytrzymałości materiałów, siły wewnętrzne, naprężenia, odkształcenia.
T-L-8Wznaczanie odkształceń (naprężeń) metodą tensometrii oporowej.
T-W-7Zginanie belek: wykresy momentów zginających i sił tnących, wskaźnik wytrzymałości przekroju, warunek wytrzymałościowych na zginanie.
T-W-2Rozciąganie i ściskanie prętów: warunki wytrzymałościowy i sztywnościowy na rozciąganie i ściskanie.
T-W-3Odkształcenia i naprężenia wywołane zmianą temperatyry.
T-W-6Skręcanie elementów maszyn o przekroju kołowym: warunki wytrzymałościowy i sztywnościowy na skręcanie.
T-W-8Ugięcia belek: ugięcie kątowe i liniowe belki, różniczkowe równanie osi ugiętej belki, warunki brzegowe.
T-L-4Próba udarności sposobem Charpy'ego.
T-L-7Wyznaczanie sił krytycznych dla prętów ściskanych siłą poosiową.
T-L-6Kolokwium dotyczące prób rozciągania, twardości, udarności. ściskania i ścinania.
T-L-10Wybrane próby technologiczne.
T-L-9Badanie wytrzymałości zmęczeniowej metodą Wohlera.
T-W-9Wyboczenie prętów sciskanych siłą osiowa: naprężenia krytyczne w przypadku wyboczenia sprężystego i sprężysto-plastycznego.
T-W-4Ścinanie, naciski powierzchniowe: warunki wytrzymałościowe.
T-A-11Kolokwium z zakresu zginania, wyboczenia i wytrzymałości złożonej.
T-L-2Statyczna próba rozciągania.
T-W-10Wytężenie materiałów: stan naprężenia, stan odkształcenia, wytężenie, naprężenia redukowane, hipotezy wytężeniowe.
T-W-5Momenty bezwładności płaskich przekrojów brył: definicje momentu bezwładności i momentu odśrodkowego, twierdzenie Steinera, główne osie i momenty bezwładności.
T-L-1Zajęcia wprowadzające: regulamin laboratorium, normy, ogólna charakterystyka materiałów, obciążeń, maszyn wytrzymałościowych.
T-L-11Kolokwium z zakresu wyboczenia, pomiarów tensometrycznych, wytrzymałości zmęczeniowej i prób technologicznych.
Metody nauczaniaM-1Wykład informacyjny.
M-2Objaśnienia.
M-3Ćwiczenia problemowe.
M-4Ćwiczenia laboratoryjne.
M-5Z użyciem maszyn dydaktycznych.
M-6Pokaz.
Sposób ocenyS-4Ocena podsumowująca: Na podstawie wyniku egzaminu pisemnego i ustnego.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojęć, wielkości i praw wytrzymałości materiałów, nie umie wykorzystać podstawowych narzędzi do rozwiązywania zadań.
3,0Student zna większość podstawowych pojęć, wielkości i praw wytrzymałości materiałów, umie wykorzystać wybrane podstawowych narzędzi do rozwiązywania zadań.
3,5Student zna podstawowych pojęć, wielkości i praw wytrzymałości materiałów, stusuje właściwe narzędzia do rozwiązywania zadań, popełnia drobne błędy i pomyłki.
4,0Student zna podstawowe pojęcia, wielkości i prawa wytrzymałości materiałów, wykorzystuje w sposób poprawny wszystkie poznane narzędzia.
4,5Student zna podstawowe pojęcia, wielkości i prawa wytrzymałości materiałów, wykorzystuje w sposób poprawny wszystkie poznane w trakcie zajęć narzędzia, potrafi przeprowadzić dyskusję otrzymanych wyników.
5,0Student zna podstawowe pojęcia, wielkości i prawa wytrzymałości materiałów, potrafi wykorzystać wszystkie zaproponowane w trakcie zajęć narzędzia, potrafi porównać ich efektywność, a także samodzielnie identyfikować narzędzia potrzebne do rozwiązywania zadanego problemu z jednoczesnym uzasadnieniem wyboru, potrafi przeprowadzić dyskusję otrzymanych wyników.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaT_1A_B20_U01W wyniku przeprowadzonych zajęć student powinien umieć: - korzystać z literatury i wskazanych źródeł, - dobrać i zastosować odpowiednią metodę rozwiązania zadania wytrzymałościowego z zakresu tematów zrealizowanych na wykładach, - obliczać odkształcenia i naprężenia w prętach rozciąganych i ściskanych układów statycznie wyznaczalnych i niewyznaczalnych, wyznaczać wymiary tych prętów, - obliczać odkształcenia i naprężenia cieplne elementów maszyn i konstrukcji, - wyznaczać wymiary elementów zginanych i skręcanych, - wyznaczać wymiary wałów jednocześnie skręcanych i zginanych, - obliczać siły krytyczne dla prętów ściskanych siłą poosiową, - dobrać próbki do podstawowych prób wytrzymałościowych, - wykonać podstawowe próby wytrzymałościowe pod nadzorem nauczyciela, - zinterpretować otrzymane wyniki prób wytrzymałościowych, - wyciągnąć wnioski z prób wytrzymałościowych materiałów konstrukcyjnych.
Odniesienie do efektów kształcenia dla kierunku studiówT_1A_U01potrafi pozyskiwać informacje z literatury, baz danych i innych dostępnych źródeł; potrafi łączyć uzyskane informacje, dokonywać ich interpretacji, wyciągać wnioski i formułować i uzasadniać opinie
T_1A_U04ma umiejętność samokształcenia się, między innymi w celu podnoszenia kompetencji zawodowych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U05ma umiejętność samokształcenia się
Cel przedmiotuC-2Omówienie przyczyn powstawania odkształceń i naprężeń.
C-1Zapoznanie studentów z podstawowymi pojęciami i wielkościami stosowanymi w wytrzymałości materiałów.
C-4Zapoznanie studentów z podstawami stateczności prętów ściskanych (wyboczenie).
C-9Omówienie metod badania własności wytrzymałościowych materiałów.
C-8Zapoznanie studentów z metodą obliczeń wytrzymałościowych cienkościennych osiowo-symetrycznych zbiorników.
C-10Ukształtowanie umiejętności korzystania z norm w czasie prowadzenia badań doświadczalnych oraz umiejętności opracowania i dyskusji wyników tych badań.
C-6Ukształtowanie umiejętności wyznaczania sił i naprężeń krytycznych w prętach ściskanych.
C-7Zapoznanie studentów z podstawami wytrzymałości złożonej i ukształtowanie umiejętności wyznaczania wymiarów wałów jednocześnie skręcanych i zginanych.
C-5Ukształtowanie umiejętności wyznaczania odkształceń, naprężeń, nośności i wymiarów elementów rozciąganych, ściskanych, ścinanych, skręcanych i zginanych.
C-3Zapoznanie studentów z podstawowymi warunkami wytrzymałościowymi i sztywnościowymi wykorzystywanymi w procesie projektowania elementów maszyn i konstrukcji.
C-11Ukształtowania umiejętności opracowywania sprawozdań z badań wytrzymałościowych materiałów.
Treści programoweT-A-2Obliczanie odkształceń i naprężeń wywołanych zmianą temperatur.
T-A-5Obliczanie wskaźników wytrzymałości przekrojów.
T-A-6Zastosowanie warunku wytrzymałościowego i sztywnościowego do obliczania skręcanych elementów o przekroju osiowo-symetrycznym.
T-L-11Kolokwium z zakresu wyboczenia, pomiarów tensometrycznych, wytrzymałości zmęczeniowej i prób technologicznych.
T-L-7Wyznaczanie sił krytycznych dla prętów ściskanych siłą poosiową.
T-A-8Zastosowanie warunku wytrzymałościowego na zginanie do obliczania belek.
T-L-1Zajęcia wprowadzające: regulamin laboratorium, normy, ogólna charakterystyka materiałów, obciążeń, maszyn wytrzymałościowych.
T-A-3Obliczanie odkształceń, naprężeń prętów rozciąganych lub ściskanych w układach statycznie niewyznaczalnych.
T-L-2Statyczna próba rozciągania.
T-L-10Wybrane próby technologiczne.
T-L-5Statyczna próba ściskania oraz próba ścinania technologicznego.
T-A-9Obliczanie sił i naprężeń krytycznych dla prętów ściskanych siłą poosiową.
T-A-7Kolokwium z zakresu wytrzymałości elementów rozciąganych, ściskanych, ścinanych i skręcanych.
T-L-3Pomiar twardości sposobami Brinella, Vickersa i Rockwella.
T-L-4Próba udarności sposobem Charpy'ego.
T-L-6Kolokwium dotyczące prób rozciągania, twardości, udarności. ściskania i ścinania.
T-L-9Badanie wytrzymałości zmęczeniowej metodą Wohlera.
T-L-8Wznaczanie odkształceń (naprężeń) metodą tensometrii oporowej.
T-A-10Obliczenia wytrzymałościowe wałów jednocześnie zginanych i skręcanych
T-A-11Kolokwium z zakresu zginania, wyboczenia i wytrzymałości złożonej.
T-A-4Zastosowanie warunku wytrzymałościowego do obliczania elementów ścinanych.
T-A-1Obliczanie odkształceń, naprężeń i wymiarów prętów rozciąganych lub ściskanych w układach statycznie wyznaczalnych.
Metody nauczaniaM-1Wykład informacyjny.
M-2Objaśnienia.
M-3Ćwiczenia problemowe.
M-4Ćwiczenia laboratoryjne.
M-5Z użyciem maszyn dydaktycznych.
M-6Pokaz.
Sposób ocenyS-2Ocena formująca: Na podstawie sprawdzianów.
S-3Ocena podsumowująca: Na podstawie wyników kolokwiów.
S-4Ocena podsumowująca: Na podstawie wyniku egzaminu pisemnego i ustnego.
S-1Ocena formująca: Na podstawie identyfikacji braków w wiedzy i umiejętnościach, prowadzonej w czasie ćwiczeń audytoryjnych i laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie umie wykorzystać podstawowych narzędzi do rozwiazywania zadań wytrzymałości materiałów.
3,0Student umie wykorzystać tylko niektóre z poznanych narzędzi do rozwiazywania zadań wytrzymałości materiałów, popełnia drobne pomyłki.
3,5Student umie poprawnie korzystać z wszystkich poznanych narzędzi w czasie rozwiazywania zadań wytrzymałości materiałów.
4,0Student umie korzystać w sposób optymalny z wszystkich poznanych narzedzi przy rozwiazywaniu zadań.
4,5Student umie korzystać w sposób optymalny z wszystkich poznanych narzedzi przy rozwiazywaniu zadań, potrafi przeprowadzić dyskusję wyników.
5,0Student umie korzystać w sposób optymalny z wszystkich poznanych narzedzi przy rozwiazywaniu zadań, potrafi przeprowadzić dyskusję wyników, oraz ocenić efektywność zastosowanych narzędzi.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaT_1A_B20_K01W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: - świadomość ważności wiedzy z zakresu wytrzymałości materiałów dla procesu projektowania elementów maszyn i konstrukcji (pojazdów samochodowych), - świadomość w wyborze odpowiednich metod rozwiązywania zadań wytrzymałości materiałów, - dbałość o poprawność wykonywanych działań, - zdolność do oceny otrzymywanych wyników, - otwartość na współpracy niezbędną przy większych projektach, - zorientowanie na ciągłe poszerzanie własnej wiedzy i umiejętności.
Odniesienie do efektów kształcenia dla kierunku studiówT_1A_K01rozumie potrzebę i zna możliwości dokształcania się i podnoszenia kompetencji zawodowych, osobistych i społecznych
T_1A_K03ma świadomość odpowiedzialności za pracę własną oraz podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Cel przedmiotuC-2Omówienie przyczyn powstawania odkształceń i naprężeń.
C-1Zapoznanie studentów z podstawowymi pojęciami i wielkościami stosowanymi w wytrzymałości materiałów.
C-4Zapoznanie studentów z podstawami stateczności prętów ściskanych (wyboczenie).
C-9Omówienie metod badania własności wytrzymałościowych materiałów.
C-8Zapoznanie studentów z metodą obliczeń wytrzymałościowych cienkościennych osiowo-symetrycznych zbiorników.
C-10Ukształtowanie umiejętności korzystania z norm w czasie prowadzenia badań doświadczalnych oraz umiejętności opracowania i dyskusji wyników tych badań.
C-6Ukształtowanie umiejętności wyznaczania sił i naprężeń krytycznych w prętach ściskanych.
C-7Zapoznanie studentów z podstawami wytrzymałości złożonej i ukształtowanie umiejętności wyznaczania wymiarów wałów jednocześnie skręcanych i zginanych.
C-5Ukształtowanie umiejętności wyznaczania odkształceń, naprężeń, nośności i wymiarów elementów rozciąganych, ściskanych, ścinanych, skręcanych i zginanych.
C-3Zapoznanie studentów z podstawowymi warunkami wytrzymałościowymi i sztywnościowymi wykorzystywanymi w procesie projektowania elementów maszyn i konstrukcji.
C-11Ukształtowania umiejętności opracowywania sprawozdań z badań wytrzymałościowych materiałów.
Treści programoweT-L-8Wznaczanie odkształceń (naprężeń) metodą tensometrii oporowej.
T-L-10Wybrane próby technologiczne.
T-L-6Kolokwium dotyczące prób rozciągania, twardości, udarności. ściskania i ścinania.
T-L-11Kolokwium z zakresu wyboczenia, pomiarów tensometrycznych, wytrzymałości zmęczeniowej i prób technologicznych.
T-L-4Próba udarności sposobem Charpy'ego.
T-L-2Statyczna próba rozciągania.
T-L-3Pomiar twardości sposobami Brinella, Vickersa i Rockwella.
T-L-7Wyznaczanie sił krytycznych dla prętów ściskanych siłą poosiową.
T-L-1Zajęcia wprowadzające: regulamin laboratorium, normy, ogólna charakterystyka materiałów, obciążeń, maszyn wytrzymałościowych.
T-L-5Statyczna próba ściskania oraz próba ścinania technologicznego.
T-L-9Badanie wytrzymałości zmęczeniowej metodą Wohlera.
Metody nauczaniaM-1Wykład informacyjny.
M-2Objaśnienia.
M-3Ćwiczenia problemowe.
M-4Ćwiczenia laboratoryjne.
M-5Z użyciem maszyn dydaktycznych.
M-6Pokaz.
Sposób ocenyS-4Ocena podsumowująca: Na podstawie wyniku egzaminu pisemnego i ustnego.
Kryteria ocenyOcenaKryterium oceny
2,0Srudent nie ma świadomości ważności wiedzy z zakresu wytrzymałości materiałów w procesie projektowania elementów maszyn, nie ma dbałości o poprawność wykonywanych działań.
3,0Srudent ma świadomości ważności wiedzy z zakresu wytrzymałości materiałów w procesie projektowania elementów maszyn oraz świadomość znaczenia wyboru odpowiednich metod rozwiązywania zadań.
3,5Student spełnia wymagania na ocenę 3,0 i dodatkowo wykazuje dbałość o poprawność wykonywanych działań.
4,0Student spełnia wymagania na ocenę 3,5 i dodatkowo wykazuje zdolność do oceny otrzymywanych wyników.
4,5Student spełnia wymagania na ocenę 4,0 i dodatkowo wykazuje otwartość na współpracę w zespole.
5,0Student spełnia wymagania na ocenę 4,5 i dodatkowo jest zorientowany na ciągłe podnoszenie własnej wiedzy i umiejętności.