Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Architektury - Inżynieria środowiska (N2)

Sylabus przedmiotu Alternatywne źródła energii i technologie proekologiczne:

Informacje podstawowe

Kierunek studiów Inżynieria środowiska
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Alternatywne źródła energii i technologie proekologiczne
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Techniki Cieplnej
Nauczyciel odpowiedzialny Aleksander Stachel <Aleksander.Stachel@zut.edu.pl>
Inni nauczyciele Radomir Kaczmarek <Radomir.Kaczmarek@zut.edu.pl>, Tomasz Kujawa <Tomasz.Kujawa@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 9 1,00,50zaliczenie
wykładyW1 9 2,00,50egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość podstaw fizyki i termodynamiki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studenta z tematyką możliwości pozyskiwania i wykorzystania energii z tzw. źródeł odnawialnych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1W ramach zajęć laboratoryjnych studenci wykonują ćwiczenia będące ilustracją tematyki prezentowanej w trakcie wykładów (badanie: panelu PV, pompy ciepła, kolektora słonecznego, mikrosiłowni wiatrowej, itp).9
9
wykłady
T-W-1- Klasyfikacja i zasoby energii odnawialnej i niekonwencjonalnej. - Podstawy teoretyczne wykorzystania energii wody: siłownie i elektrownie wodne. - Energia mórz i oceanów: sposoby wykorzystania. - Energia promieniowania słonecznego: konwersja fototermiczna i fotowoltaiczna. - Energia geotermiczna i jej zasoby. Sposoby pozyskiwania i wykorzystania. - Energia wiatru: sposoby pozyskiwania i przykłady wykorzystania. - Biomasa: technologie i kierunki wykorzystania w energetyce. - Paliwa alternatywne. - Wykorzystanie tzw. energii odpadowej w przemyśle. - Technologie konwersji paliw stałych do paliw gazowych i ciekłych. - Przyszłościowe źródła energii. Podstawy energetyki jądrowej.9
9

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach9
A-L-2Praca własna - opracowanie sprawozdań i przygotowanie do zaliczenia ćwiczeń.21
30
wykłady
A-W-1Uczestnictwo w wykładach9
A-W-2Praca własna - opracowanie zadanego tematu.6
A-W-3Przygotowanie do egzaminu45
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny (i/lub) problemowy.
M-2Metoda praktyczna: ćwiczenia laboratoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Egzamin obejmujący tematykę wykładów (pisemny / ustny). Punktowy system oceny wiedzy i umiejętności.
S-2Ocena formująca: Zrealizowanie i zaliczenie wszystkich ćwiczeń laboratoryjnych przewidzianych planem zajęć. Ocena końcowa jest średnią arytmetyczną z ocen poszczególnych ćwiczeń.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
S_2A_S2/C/02_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii ze źródeł odnawialnych oraz scharakteryzować poszczególne jej rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania OZE oraz możliwości i celowość ich użycia. Powinien być w stanie określić znaczenie odnawialnych źródeł energii w kontekscie problemów energetycznych i środowiskowych. Powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii.
S_2A_W03, S_2A_W06, S_2A_W11T2A_W03, T2A_W04, T2A_W06, T2A_W07InzA2_W01, InzA2_W02, InzA2_W05C-1T-L-1, T-W-1M-2, M-1S-2, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
S_2A_S2/C/02_U01
W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwości wykorzystania (w danych warunkach) różnych rodzajów OZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania oraz określić oddziaływanie środowiskowe OZE.
S_2A_U13, S_2A_U16T2A_U12, T2A_U18InzA2_U01C-1T-L-1, T-W-1M-2, M-1S-2, S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
S_2A_S2/C/02_K01
Student ma zdolność stosowania zdobytej wiedzy i nabytych umiejętności w dalszych etapach kształcenia się oraz w przyszłej pracy zawodowej.
S_2A_K04, S_2A_K06, S_2A_K03T2A_K01, T2A_K02InzA2_K01C-1T-L-1, T-W-1M-2, M-1S-2, S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
S_2A_S2/C/02_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii ze źródeł odnawialnych oraz scharakteryzować poszczególne jej rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania OZE oraz możliwości i celowość ich użycia. Powinien być w stanie określić znaczenie odnawialnych źródeł energii w kontekscie problemów energetycznych i środowiskowych. Powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii.
2,0
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
S_2A_S2/C/02_U01
W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwości wykorzystania (w danych warunkach) różnych rodzajów OZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania oraz określić oddziaływanie środowiskowe OZE.
2,0
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
S_2A_S2/C/02_K01
Student ma zdolność stosowania zdobytej wiedzy i nabytych umiejętności w dalszych etapach kształcenia się oraz w przyszłej pracy zawodowej.
2,0
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Mikielewicz J., Cieśiński J., Niekonwencjonalne urządzenia i systemy konwersji energii, Ossolineum, Wrocław, 1999
  2. Nowak W., Stachel A., Stan i perspektywy wykorzystania odnawialnych źródeł energii w Polsce, Wyd. Politechniki Szczecińskiej, Szczecin, 2004
  3. Lewandowski W.M., Proekologiczne odnawialne źródła energii, WNT, Wydawnictwo Naukowo-Techniczne, Warszawa, 2007
  4. Nowak W., Stachel A., Borsukiewicz-Gozdur A., Zastosowania odnawialnych źródeł energii, Wyd. Politechniki Szczecińskiej, Szczecin, 2008

Literatura dodatkowa

  1. Nowak W., Sobański R., Kabat M., Kujawa T., Systemy pozyskiwania i wykorzystania energii geotermicznej, Wyd. Politechniki Szczecińskiej, Szczecin, 2000
  2. Gronowicz J., Niekonwencjonalne źródła energii, Radom - Poznań, 2008
  3. Praca zbiorowa, Odnawialne źródła energii. Poradnik, Tarbonus sp. z o.o., Kraków - Tarnobrzeg, 2008
  4. Instrukcje do ćwiczeń laboratoryjnych z OZE, Opracowanie własne KTC, 2010

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1W ramach zajęć laboratoryjnych studenci wykonują ćwiczenia będące ilustracją tematyki prezentowanej w trakcie wykładów (badanie: panelu PV, pompy ciepła, kolektora słonecznego, mikrosiłowni wiatrowej, itp).9
9

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1- Klasyfikacja i zasoby energii odnawialnej i niekonwencjonalnej. - Podstawy teoretyczne wykorzystania energii wody: siłownie i elektrownie wodne. - Energia mórz i oceanów: sposoby wykorzystania. - Energia promieniowania słonecznego: konwersja fototermiczna i fotowoltaiczna. - Energia geotermiczna i jej zasoby. Sposoby pozyskiwania i wykorzystania. - Energia wiatru: sposoby pozyskiwania i przykłady wykorzystania. - Biomasa: technologie i kierunki wykorzystania w energetyce. - Paliwa alternatywne. - Wykorzystanie tzw. energii odpadowej w przemyśle. - Technologie konwersji paliw stałych do paliw gazowych i ciekłych. - Przyszłościowe źródła energii. Podstawy energetyki jądrowej.9
9

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach9
A-L-2Praca własna - opracowanie sprawozdań i przygotowanie do zaliczenia ćwiczeń.21
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach9
A-W-2Praca własna - opracowanie zadanego tematu.6
A-W-3Przygotowanie do egzaminu45
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaS_2A_S2/C/02_W01W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować i omówić pojęcie energii ze źródeł odnawialnych oraz scharakteryzować poszczególne jej rodzaje. Powinien mieć wiedzę pozwalającą przedstawić i omówić podstawowe sposoby wykorzystania OZE oraz możliwości i celowość ich użycia. Powinien być w stanie określić znaczenie odnawialnych źródeł energii w kontekscie problemów energetycznych i środowiskowych. Powinien mieć wiedzę pozwalającą omówić perspektywiczne technologie pozyskiwania energii.
Odniesienie do efektów kształcenia dla kierunku studiówS_2A_W03Zna dostępne technologie chroniące środowisko, zna zasady analizy rozwiązań technicznych w inżynierii środowiska, budownictwie i przemyśle pod kątem określenia ich wpływu na środowisko
S_2A_W06Ma poszerzoną wiedzę związaną z kluczowymi zagadnieniami z zakresu wybranej specjalności
S_2A_W11Zna możliwości wykorzystania alternatywnych źródeł energii w budownictwie i przemyśle
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T2A_W06ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
T2A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_W01ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
InzA2_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
InzA2_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie studenta z tematyką możliwości pozyskiwania i wykorzystania energii z tzw. źródeł odnawialnych.
Treści programoweT-L-1W ramach zajęć laboratoryjnych studenci wykonują ćwiczenia będące ilustracją tematyki prezentowanej w trakcie wykładów (badanie: panelu PV, pompy ciepła, kolektora słonecznego, mikrosiłowni wiatrowej, itp).
T-W-1- Klasyfikacja i zasoby energii odnawialnej i niekonwencjonalnej. - Podstawy teoretyczne wykorzystania energii wody: siłownie i elektrownie wodne. - Energia mórz i oceanów: sposoby wykorzystania. - Energia promieniowania słonecznego: konwersja fototermiczna i fotowoltaiczna. - Energia geotermiczna i jej zasoby. Sposoby pozyskiwania i wykorzystania. - Energia wiatru: sposoby pozyskiwania i przykłady wykorzystania. - Biomasa: technologie i kierunki wykorzystania w energetyce. - Paliwa alternatywne. - Wykorzystanie tzw. energii odpadowej w przemyśle. - Technologie konwersji paliw stałych do paliw gazowych i ciekłych. - Przyszłościowe źródła energii. Podstawy energetyki jądrowej.
Metody nauczaniaM-2Metoda praktyczna: ćwiczenia laboratoryjne.
M-1Wykład informacyjny (i/lub) problemowy.
Sposób ocenyS-2Ocena formująca: Zrealizowanie i zaliczenie wszystkich ćwiczeń laboratoryjnych przewidzianych planem zajęć. Ocena końcowa jest średnią arytmetyczną z ocen poszczególnych ćwiczeń.
S-1Ocena podsumowująca: Egzamin obejmujący tematykę wykładów (pisemny / ustny). Punktowy system oceny wiedzy i umiejętności.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaS_2A_S2/C/02_U01W wyniku przeprowadzonych zajęć student powinien umieć wykazać potrzebę i celowość wykorzystania energii ze źródeł odnawialnych, a także umieć ocenić możliwości wykorzystania (w danych warunkach) różnych rodzajów OZE celem zaspokojenia określonych potrzeb energetycznych. Powinien umieć wskazać konkretne rozwiązania przydatne do praktycznego zastosowania oraz określić oddziaływanie środowiskowe OZE.
Odniesienie do efektów kształcenia dla kierunku studiówS_2A_U13Potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w inżynierii środowiska
S_2A_U16Potrafi wykonać pomiary i badania systemów, procesów i urządzeń inżynierii środowiska w zakresie analizy poprawności działania, oddziaływania na środowisko i identyfikacji
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U12potrafi ocenić przydatność i możliwość wykorzystania nowych osiągnięć (technik i technologii) w zakresie studiowanego kierunku studiów
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-1Zapoznanie studenta z tematyką możliwości pozyskiwania i wykorzystania energii z tzw. źródeł odnawialnych.
Treści programoweT-L-1W ramach zajęć laboratoryjnych studenci wykonują ćwiczenia będące ilustracją tematyki prezentowanej w trakcie wykładów (badanie: panelu PV, pompy ciepła, kolektora słonecznego, mikrosiłowni wiatrowej, itp).
T-W-1- Klasyfikacja i zasoby energii odnawialnej i niekonwencjonalnej. - Podstawy teoretyczne wykorzystania energii wody: siłownie i elektrownie wodne. - Energia mórz i oceanów: sposoby wykorzystania. - Energia promieniowania słonecznego: konwersja fototermiczna i fotowoltaiczna. - Energia geotermiczna i jej zasoby. Sposoby pozyskiwania i wykorzystania. - Energia wiatru: sposoby pozyskiwania i przykłady wykorzystania. - Biomasa: technologie i kierunki wykorzystania w energetyce. - Paliwa alternatywne. - Wykorzystanie tzw. energii odpadowej w przemyśle. - Technologie konwersji paliw stałych do paliw gazowych i ciekłych. - Przyszłościowe źródła energii. Podstawy energetyki jądrowej.
Metody nauczaniaM-2Metoda praktyczna: ćwiczenia laboratoryjne.
M-1Wykład informacyjny (i/lub) problemowy.
Sposób ocenyS-2Ocena formująca: Zrealizowanie i zaliczenie wszystkich ćwiczeń laboratoryjnych przewidzianych planem zajęć. Ocena końcowa jest średnią arytmetyczną z ocen poszczególnych ćwiczeń.
S-1Ocena podsumowująca: Egzamin obejmujący tematykę wykładów (pisemny / ustny). Punktowy system oceny wiedzy i umiejętności.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaS_2A_S2/C/02_K01Student ma zdolność stosowania zdobytej wiedzy i nabytych umiejętności w dalszych etapach kształcenia się oraz w przyszłej pracy zawodowej.
Odniesienie do efektów kształcenia dla kierunku studiówS_2A_K04Ma świadomość konieczności zrównoważonego rozwoju w inżynierii środowiska
S_2A_K06Ma świadomość konieczności podnoszenia kompetencji zawodowych i osobistych, samodzielnie uzupełnia i poszerza wiedzę w zakresie nowoczesnych procesów, technologii oraz metod zarządzania w inżynierii środowiska
S_2A_K03Ma świadomość ważności oraz rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływ na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T2A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-1Zapoznanie studenta z tematyką możliwości pozyskiwania i wykorzystania energii z tzw. źródeł odnawialnych.
Treści programoweT-L-1W ramach zajęć laboratoryjnych studenci wykonują ćwiczenia będące ilustracją tematyki prezentowanej w trakcie wykładów (badanie: panelu PV, pompy ciepła, kolektora słonecznego, mikrosiłowni wiatrowej, itp).
T-W-1- Klasyfikacja i zasoby energii odnawialnej i niekonwencjonalnej. - Podstawy teoretyczne wykorzystania energii wody: siłownie i elektrownie wodne. - Energia mórz i oceanów: sposoby wykorzystania. - Energia promieniowania słonecznego: konwersja fototermiczna i fotowoltaiczna. - Energia geotermiczna i jej zasoby. Sposoby pozyskiwania i wykorzystania. - Energia wiatru: sposoby pozyskiwania i przykłady wykorzystania. - Biomasa: technologie i kierunki wykorzystania w energetyce. - Paliwa alternatywne. - Wykorzystanie tzw. energii odpadowej w przemyśle. - Technologie konwersji paliw stałych do paliw gazowych i ciekłych. - Przyszłościowe źródła energii. Podstawy energetyki jądrowej.
Metody nauczaniaM-2Metoda praktyczna: ćwiczenia laboratoryjne.
M-1Wykład informacyjny (i/lub) problemowy.
Sposób ocenyS-2Ocena formująca: Zrealizowanie i zaliczenie wszystkich ćwiczeń laboratoryjnych przewidzianych planem zajęć. Ocena końcowa jest średnią arytmetyczną z ocen poszczególnych ćwiczeń.
S-1Ocena podsumowująca: Egzamin obejmujący tematykę wykładów (pisemny / ustny). Punktowy system oceny wiedzy i umiejętności.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5
4,0
4,5
5,0