Wydział Technologii i Inżynierii Chemicznej - Ochrona środowiska (S1)
Sylabus przedmiotu Chemia fizyczna II:
Informacje podstawowe
Kierunek studiów | Ochrona środowiska | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Chemia fizyczna II | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Chemii Organicznej i Chemii Fizycznej | ||
Nauczyciel odpowiedzialny | Wiesław Parus <Wieslaw.Parus@zut.edu.pl> | ||
Inni nauczyciele | Maciej Jabłoński <Maciej.Jablonski@zut.edu.pl>, Janina Możejko <Janina.Mozejko@zut.edu.pl>, Magdalena Olszak-Humienik <Magdalena.Olszak-Humienik@zut.edu.pl>, Andrzej Wieczorek <Andrzej.Wieczorek@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawowa wiedza z zakresu matematyki, fizyki, chemii nieorganicznej, organicznej i analitycznej oraz znajomość chemii fizycznej wyniesiona z uczestniczenia w wykładach i cwiczeniach audytoryjnych z tego przedmiotu w semestrze poprzednim (4). |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Podanie ogólnych zależności wiążących mierzalne własności materii i jednolitych form ich prezentowania. Zrozumienie i interpretacja zjawisk obserwowanych w rzeczywistych układach chemicznych. Umiejętność zaplanowania i przeprowadzenia pomiarów podstawowych wielkości fizykochemicznych. Umiejętność interpretacji wyników eksperymentalnych uzyskanych z wykorzystaniem nowoczesnych metod badawczych oraz przewidywania własności fizykochemicznych materii. Umiejętność stosowania podstawowych wiadomości z zakresu termodynamiki, równowag, kinetyki i elektrochemii do przewidywania kierunku przebiegu procesów i doboru warunków ich prowadzenia. |
C-2 | Wykształcenie włściwych zachowań, punktualności, rzetelności w prowadzeniu pomiarów i obliczeń fizykochemicznych oraz umiejętności pracy w grupie. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Pomiar temperatury, ciśnienia, prężności par, gęstości, lepkości, współczynnika załamania światła, ekstynkcji, przewodnictwa właściwego, napięcia powierzchniowego, pojemności cieplnej, stężeń, pH i ich zmian pod wpływem zmian parametrów intensywnych, efektów cieplnych przemian fizycznych i chemicznych, wyznaczanie równowag fazowych w różnych układach. Wykorzystanie danych eksperymentalnych do interpretacji zjawisk zachodzących w rzeczywistych układach. Matematyczny opis analizowanych zależności i procesów z wykorzystaniem uzyskanych danych doświadczalnych. | 45 |
45 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Udział w zajęciach laboratoryjnych. | 45 |
A-L-2 | Przygotowanie się do zajęć laboratoryjnych. | 15 |
A-L-3 | Opracowanie wyników pomiarów. | 30 |
A-L-4 | Przygotowanie sprawozdań z ćwiczeń. | 15 |
A-L-5 | Przygotowanie się do kolokwium. | 45 |
150 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | ćwiczenia laboratoryjne, objaśnianie i wyjaśnienie problemów |
M-2 | objaśnianie i wyjaśnianie problemów |
M-3 | anegdota |
M-4 | gry dydaktyczne ( symulacyjne, decyzyjne, psychologiczne ) |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena formująca, z zakresu wymagań wstępnych, nie mająca wpływu na ocenę końcową, prowadzona na początku zajęć mająca na celu ukierunkowanie nauczania do poziomu studentów |
S-2 | Ocena podsumowująca: Ocena podsumowująca osiągnięte efekty uczenia się, poprawności wykonania pomiarów i opracowania wyników tych pomiarów po każdym wykonanym ćwiczeniu, na podstawie ustnego zaliczenia tego ćwiczenia. Ocena końcowa, podsumowujaca to średnia arytmetyczna ocen z wykonanych przez studenta ćwiczeń. |
S-3 | Ocena podsumowująca: Ocena podsumowująca osiagnięte założone efekty kształcenia kompetencji społecznych. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
KOS_1A_B07-2_W01 W wyniku przeprowadzonych zajęć z tego przedmiotu łącznie w semestrze 4 i 5 student powinien być w stanie: Zdefiniować: stan skupienia, gaz doskonały, parametry stanu, ciśnienie, temperaturę, wielkości intensywne i ekstensywne, przemianę, układ, fazę, stopień swobody, składnik, indywiduum chemiczne, stężenia, energię wewnętrzną, ciepło, pracę, entropię, entalpię, entalpię swobodną, energię swobodną, pojemność cieplną, prędkość średnią kwadratową, dyfuzję, efuzję, lepkość, napięcie powierzchniowe, ciepło reakcji, reakcje endo- i egzotermiczną, równowagę fizyczną i chemiczną, przemianę fazową I i II rodzaju, procesy samorzutne, iloraz reakcji, współczynnik podziału, substraty, produkty, stałą równowagi reakcji, szybkość reakcji, wielkości cząstkowe molowe, aktywność, stan standardowy, funkcje mieszania, funkcje ekscesu, elektrolity, solwatację, siłę jonową, elektrodę, ogniwo, dysocjację, stopień dysocjacji, stałą dysocjacji, przewodnictwo właściwe i równoważnikowe, iloczyn rozpuszczalności, rzędowość reakcji, cząsteczkowość reakcji, energię aktywacji, współczynnik przedwykładniczy w równaniu Arrheniusa, katalizator, refrakcję, wielkości addytywne, współczynnik załamania światła, ekstynkcję, moment dipolowy, polaryzację, polaryzowalność, potencjał chemiczny. Formułować: teorie: kinetyczną gazów, Debay`a-Hückla, kompleksu aktywnego, zderzeń, orbitali molekularnych, reguły: faz Gibbsa, dźwigni, prostej łączącej, Troutona, przekory, zasady termodynamiki prawa: Daltona, Raoulta, Henrye`go, Grahama, Hessa, Kirchoffa, Gibbsa-Helmholtza, Nernsta, Claussiusa-Clapeyrona, Arrheniusa, Ostwalda, Snelliusa, Beera, Lamberta-Beera, addytywności absorpcji światła, Faraday`a Nazywać: przemiany, funkcje, procesy jednostkowe stosowane w inżynierii, zmienne zależne i niezależne, Objaśniać: wpływ poszczególnych parametrów na kierunek przemian, diagramy fazowe, mechanizm reakcji, zasadę działania aparatów wykorzystywanych w laboratorium Odtwarzać: własności fizykochemiczne materii na podstawie równań je opisujących Opisać: układ reakcyjny, zjawiska zachodzące w analizowanym układzie, mechanizm prostych reakcji Podsumować: reakcje zachodzące w ogniwie, entalpie, entropie, potencjały chemiczne i pojemności cieplne reagentów Rozróżniać: Parametry stanu, funkcje termodynamiczne, przemiany fazowe, reakcje chemiczne, elek-trody, ogniwa, elektrolity, równania kinetyczne reakcji, efekty cieplne reakcji Scharakteryzować: Stany skupienia materii, roztwory, fazy, przemiany fazowe, układy reakcyjne, kinetykę reakcji, procesy jednostkowe Tłumaczyć: Zasady termodynamiki, samorzutność procesów, kierunki przemian, zjawiska w roztworach Wskazać: Liczbę stopni swobody, liczbę faz, liczbę składników, rząd reakcji Wybrać: Diagram fazowy dla danego układu Zaproponować: Schemat reakcji chemicznej, mechanizm reakcji, sekwencję przemian Zidentyfikować: rodzaj przemiany, rodzaj roztworu, rzędowość reakcji, parametry kinetyczne reakcji | KOS_1A_W04, KOS_1A_W05, KOS_1A_W07, KOS_1A_W13 | T1A_W01, T1A_W03, T1A_W07 | InzA_W02 | C-1 | T-L-1 | M-1 | S-1, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
KOS_1A_B07-2_U01 W wyniku przeprowadzonych zajęć, łącznie w semestrze 4 i 5 student powinien umieć: Analizować: skład roztworu, diagramy fazowe, schematy reakcji, równania kinetyczne, zmiany funkcji termodynamicznych, zależności pomiędzy parametrami Dobierać: wskaźniki, metody analityczne, bufory, elektrody, metody wyznaczania rzędowości reakcji Korzystać: z literatury fachowej, poradników fizykochemicznych Montować: aparaturę do destylacji, do pomiarów prężności, do pomiarów napięcia powierzchniowego, lepkości. Obsługiwać: pehametr, spekol, refraktometr, wiskozymetr, konduktometr, ebuliometr Świętosławskiego, termostat Rozwiązywać: zadania z zakresu chemii fizycznej Wykonywać: pomiary p, T, współczynnika załamania światła, temp. topnienia, lepkości, napięcia powierzchniowego, ekstynkcji, transmitancji, pojemność kondensatora, napięcia ogniwa w warunkach bezprądowych, pH Sporządzić: roztwory o danym stężeniu Współpracować w zespole na stanowisku pracy Wykonywać: analizę miareczkową Wyszukiwać: w literaturze własności fizykochemiczne substancji, wartości standardowych funkcji termodynamicznych Wyznaczyć: linię operacyjną procesu rektyfikacji Zaprezentować: wyniki pomiarów na wykresie Zbilansować: proces destylacji, rektyfikacji, ekstrakcji Zinterpretować; uzyskane wyniki pomiarów, diagram fazowy, równanie kinetyczne Zorganizować: stanowisko pracy w laboratorium, pomiary podstawowych wielkości fizykochemicznych. | KOS_1A_U01, KOS_1A_U09, KOS_1A_U10 | T1A_U01, T1A_U07, T1A_U08 | InzA_U01 | C-1 | T-L-1 | M-1 | S-1, S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
KOS_1A_B07-2_K01 W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: aktywna postawa w pomiarach, umiejetnosć współpracy w grupie, chętny do prac laboratoryjnych, dbałości o porządek na stanowisku pracy, otwartości na postępy w chemii, kreatywność w poszukiwaniu nowych rozwiązań, postępowanie zgodne z zasadami bhp, regulaminem obowiązującym w laboratorium studenckim i zasadami etyki, postrzeganie relacji przełożony podwładny, terminowej realizacji zadań, punktualnego przychodzenia na zajęcia, ma świadomość konieczności precyzyjnego wykonywania pomiarów i ustawicznego kształcenia, wrażliwość na sprawiedliwą ocenę, wyrażania ocen o prowadzącym zajęcia. | KOS_1A_K02, KOS_1A_K04, KOS_1A_K05, KOS_1A_K06 | T1A_K02, T1A_K03, T1A_K04, T1A_K05 | InzA_K01, InzA_K02 | C-2 | T-L-1 | M-3, M-4 | S-3 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
KOS_1A_B07-2_W01 W wyniku przeprowadzonych zajęć z tego przedmiotu łącznie w semestrze 4 i 5 student powinien być w stanie: Zdefiniować: stan skupienia, gaz doskonały, parametry stanu, ciśnienie, temperaturę, wielkości intensywne i ekstensywne, przemianę, układ, fazę, stopień swobody, składnik, indywiduum chemiczne, stężenia, energię wewnętrzną, ciepło, pracę, entropię, entalpię, entalpię swobodną, energię swobodną, pojemność cieplną, prędkość średnią kwadratową, dyfuzję, efuzję, lepkość, napięcie powierzchniowe, ciepło reakcji, reakcje endo- i egzotermiczną, równowagę fizyczną i chemiczną, przemianę fazową I i II rodzaju, procesy samorzutne, iloraz reakcji, współczynnik podziału, substraty, produkty, stałą równowagi reakcji, szybkość reakcji, wielkości cząstkowe molowe, aktywność, stan standardowy, funkcje mieszania, funkcje ekscesu, elektrolity, solwatację, siłę jonową, elektrodę, ogniwo, dysocjację, stopień dysocjacji, stałą dysocjacji, przewodnictwo właściwe i równoważnikowe, iloczyn rozpuszczalności, rzędowość reakcji, cząsteczkowość reakcji, energię aktywacji, współczynnik przedwykładniczy w równaniu Arrheniusa, katalizator, refrakcję, wielkości addytywne, współczynnik załamania światła, ekstynkcję, moment dipolowy, polaryzację, polaryzowalność, potencjał chemiczny. Formułować: teorie: kinetyczną gazów, Debay`a-Hückla, kompleksu aktywnego, zderzeń, orbitali molekularnych, reguły: faz Gibbsa, dźwigni, prostej łączącej, Troutona, przekory, zasady termodynamiki prawa: Daltona, Raoulta, Henrye`go, Grahama, Hessa, Kirchoffa, Gibbsa-Helmholtza, Nernsta, Claussiusa-Clapeyrona, Arrheniusa, Ostwalda, Snelliusa, Beera, Lamberta-Beera, addytywności absorpcji światła, Faraday`a Nazywać: przemiany, funkcje, procesy jednostkowe stosowane w inżynierii, zmienne zależne i niezależne, Objaśniać: wpływ poszczególnych parametrów na kierunek przemian, diagramy fazowe, mechanizm reakcji, zasadę działania aparatów wykorzystywanych w laboratorium Odtwarzać: własności fizykochemiczne materii na podstawie równań je opisujących Opisać: układ reakcyjny, zjawiska zachodzące w analizowanym układzie, mechanizm prostych reakcji Podsumować: reakcje zachodzące w ogniwie, entalpie, entropie, potencjały chemiczne i pojemności cieplne reagentów Rozróżniać: Parametry stanu, funkcje termodynamiczne, przemiany fazowe, reakcje chemiczne, elek-trody, ogniwa, elektrolity, równania kinetyczne reakcji, efekty cieplne reakcji Scharakteryzować: Stany skupienia materii, roztwory, fazy, przemiany fazowe, układy reakcyjne, kinetykę reakcji, procesy jednostkowe Tłumaczyć: Zasady termodynamiki, samorzutność procesów, kierunki przemian, zjawiska w roztworach Wskazać: Liczbę stopni swobody, liczbę faz, liczbę składników, rząd reakcji Wybrać: Diagram fazowy dla danego układu Zaproponować: Schemat reakcji chemicznej, mechanizm reakcji, sekwencję przemian Zidentyfikować: rodzaj przemiany, rodzaj roztworu, rzędowość reakcji, parametry kinetyczne reakcji | 2,0 | |
3,0 | ma zliczone sprawdziany pisemne z wiedzy dotyczącej wykonywanych ćwiczeń ( wymagana znajomość 60 % treści programowych ) | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
KOS_1A_B07-2_U01 W wyniku przeprowadzonych zajęć, łącznie w semestrze 4 i 5 student powinien umieć: Analizować: skład roztworu, diagramy fazowe, schematy reakcji, równania kinetyczne, zmiany funkcji termodynamicznych, zależności pomiędzy parametrami Dobierać: wskaźniki, metody analityczne, bufory, elektrody, metody wyznaczania rzędowości reakcji Korzystać: z literatury fachowej, poradników fizykochemicznych Montować: aparaturę do destylacji, do pomiarów prężności, do pomiarów napięcia powierzchniowego, lepkości. Obsługiwać: pehametr, spekol, refraktometr, wiskozymetr, konduktometr, ebuliometr Świętosławskiego, termostat Rozwiązywać: zadania z zakresu chemii fizycznej Wykonywać: pomiary p, T, współczynnika załamania światła, temp. topnienia, lepkości, napięcia powierzchniowego, ekstynkcji, transmitancji, pojemność kondensatora, napięcia ogniwa w warunkach bezprądowych, pH Sporządzić: roztwory o danym stężeniu Współpracować w zespole na stanowisku pracy Wykonywać: analizę miareczkową Wyszukiwać: w literaturze własności fizykochemiczne substancji, wartości standardowych funkcji termodynamicznych Wyznaczyć: linię operacyjną procesu rektyfikacji Zaprezentować: wyniki pomiarów na wykresie Zbilansować: proces destylacji, rektyfikacji, ekstrakcji Zinterpretować; uzyskane wyniki pomiarów, diagram fazowy, równanie kinetyczne Zorganizować: stanowisko pracy w laboratorium, pomiary podstawowych wielkości fizykochemicznych. | 2,0 | |
3,0 | student ma znajomość 60 -70% treści programowych oraz poprawnie wykonane sprawozdania z ćwiczeń laboratoryjnych, przyjęte przez prowadzącego zajęcia | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
KOS_1A_B07-2_K01 W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: aktywna postawa w pomiarach, umiejetnosć współpracy w grupie, chętny do prac laboratoryjnych, dbałości o porządek na stanowisku pracy, otwartości na postępy w chemii, kreatywność w poszukiwaniu nowych rozwiązań, postępowanie zgodne z zasadami bhp, regulaminem obowiązującym w laboratorium studenckim i zasadami etyki, postrzeganie relacji przełożony podwładny, terminowej realizacji zadań, punktualnego przychodzenia na zajęcia, ma świadomość konieczności precyzyjnego wykonywania pomiarów i ustawicznego kształcenia, wrażliwość na sprawiedliwą ocenę, wyrażania ocen o prowadzącym zajęcia. | 2,0 | |
3,0 | student jest punktualny i bierze czynny udział w zajęciach, rzetelnie wykonuje pomiary i obliczenia wyników pomiarów, potrafi współdziałać i współpracować w grupie przyjmując w niej różne role | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Atkins P.W., Chemia fizyczna, WN PWN, Warszawa, 2001
- Bursa S., Chemia fizyczna, PWN, Warszawa, 1976
- Antoszczyszyn M., Sokołowska E., Straszko J., Termodynamika chemiczna układów rzeczywistych, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1998
Literatura dodatkowa
- Praca zbiorowa, wyd. 3, Chemia fizyczna, PWN, Warszawa, 1966
- Barrow G.M, Chemia fizyczna, PWN, Warszawa, 1971
- Szarawara J., Termodynamika chemiczna, WNT, Warszawa, 1985
- Gumiński K., Wykłady z chemii fizycznej, PWN, Warszawa, 1973
- Buchowski H., Ufnalski W., Roztwory, WNT, Warszawa, 1995
- Försterling H.D., Kuhn H., Eksperymentalna chemia fizyczna, WNT, Warszawa, 1976
- Perkowski J., Świątkowski W., Tilk S., Ćwiczenia laboratoryjne z chemii fizycznej, Politechnika Łódzka, Łódż, 1996