Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Zarządzanie i inżynieria produkcji (N2)
specjalność: zarządzanie energią i środowiskiem

Sylabus przedmiotu Analiza danych i procesów:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Analiza danych i procesów
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Technologii Mechanicznej
Nauczyciel odpowiedzialny Bolesław Fabisiak <Boleslaw.Fabisiak@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL3 14 1,50,50zaliczenie
wykładyW3 14 1,50,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Konieczna wiedza z podstaw informatyki, organizacji baz danych i struktur danych, znajomość zasad działań na macierzach oraz podstaw programowania w środowisku MATLAB

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Celem jest poznanie metod analizy danych, w tym dużych zbiorów danych, technik wyszukiwania wiedzy w zbiorach danych i wizualizacji danych oraz nabycie umiejętnosci rozwiązania problemów klasyfikacji i klasteryzacji danych, budowania modeli procesów (technologicznych, ekonomicznych, biznesowych, itp.) oraz poznanie metod mapowania i wizualizacji w/w procesów.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Rozwiązanie problemów klasyfikacji zbiorów danych4
T-L-2Badanie technik budowy drzew klasyfikacyjnych4
T-L-3Badanie metod regresji : regresja liniowa i nieliniowa, drzewa regresyjne, regresja wielu zmiennych4
T-L-4Badanie metod analizy szeregów czasowych2
14
wykłady
T-W-1Podstawowe pojęcia związane z analizą danych i procesów. Podejście procesowe jako jedna z zasad zarządzania procesami w przedsiębiorstwie.2
T-W-2Podstawy analityki biznesowej. Mechanizmy sterujące procesami w przedsiębiorstwie, mierzenie wydajności procesów produkcyjnych, optymalizacja procesów. Systemy informowania kierownictwa (EIS), systemy wspomagania decyzji (DSS), systemy informacyjne zarządzania (MIS).4
T-W-3Metody klasyfikacji i regresji * Metody tworzenia reguł klasyfikacyjnych * Metody tworzenia drzew decyzyjnych * Metody tworzenia funkcji matematycznych * Prognostyka procesów4
T-W-4Klasteryzacja * Oceny błiskości elementów zbiorów oparte na miarach odłegłości * Podstawowe algorytmy klasteryzacji * Adaptacyjne algorytmy klasteryzacji2
T-W-5Mapowanie procesów przemysłowych. Narządzania do analizy i mapowania procesów. Przykłady analizy danych i procesów w przedsiębiorstwie.2
14

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Studiowanie literatury, przygotowanie się do zajęć14
A-L-2Udział w zajęciach laboratoryjnych14
A-L-3Konsultacje, przygotowanie sprawozdań i zaliczenie12
40
wykłady
A-W-1Studiowanie literatury, przygotowanie do zajęć14
A-W-2Uczęszczenie na wykłady14
A-W-3Konsultacje z tematów wykładów, zaliczenie12
40

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykłady
M-2Ćwiczenia laboratoryjne
M-3Konsultacje z tematów wykładów i tematów zajęć laboratoryjnych.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena na podstawie sprawozdań z wykonanych ćwiczeń, terminowości wykonania zadań i zaliczeń oraz odpowiedzi na pytania wykładowcy zadawane podczas zaliczenia.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_2A_C05_W01
ma wiedzę w zakresie technologii analizy danych, tworzenia modeli procesów produkcyjnych, wstępnej obróbki danych stosowania reduktów w dużych zbiorów danych a także zna podstawowe metody i algorytmy exploracji danych (klasyfikacja i klasteryzacja) oraz badania i prognozowania procesów.
ZIIP_2A_W04T2A_W03C-1T-W-4, T-W-1, T-W-3, T-W-2, T-W-5M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_2A_C05_U01
Potrafi zastosować poznane metody do studium przypadku
ZIIP_2A_U09, ZIIP_2A_U08T2A_U08, T2A_U09C-1M-1S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_2A_C05_K01
Jest świadomy roli i potrzeby dokształcania
ZIIP_2A_K01T2A_K01C-1M-1S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ZIIP_2A_C05_W01
ma wiedzę w zakresie technologii analizy danych, tworzenia modeli procesów produkcyjnych, wstępnej obróbki danych stosowania reduktów w dużych zbiorów danych a także zna podstawowe metody i algorytmy exploracji danych (klasyfikacja i klasteryzacja) oraz badania i prognozowania procesów.
2,0Student nie wykazał wiedzy z tematów teoretycznych przedstawionych na wykładach i nie wykonał wszystkie zadania na zajęciach laboratoryjnych.
3,0Student wykazał bardzo słąbą wiedzę z tematów teoretycznych przedstawionych na wykładach i nie wykonał wszystkie zadania na zajęciach laboratoryjnych.
3,5Student wykazał słabą wiedzę kompetencję z tematów teoretycznych przedstawionych na wykładach, ale w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych.
4,0Student wykazał dobrą wiedzę z większości tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale nie wykazał dobrą wiedzę w analizę metod alternatywnych rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
4,5Student wykazał dobrą wiedzę ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale niekiedy myli się w ocenie zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
5,0Student wykazał bardzo dobrą wiedzę ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, i w stanie przedstawić dokładną i pełną analizę zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ZIIP_2A_C05_U01
Potrafi zastosować poznane metody do studium przypadku
2,0Student nie wykazał umiejętności wykorzystania wiedzy z teorii analizy danych i porocesów do wykonania zadań na zajęciach laboratoryjnych.
3,0Student wykazał słabą umiejętnośc posługiwania wiedą teoretyczną do rozwiązania zadań na zajęciach laboratoryjnych i w stanie rozwiązywać nie zbyt trudne problemy.
3,5Student wykazał pewną kompetencję z tematów teoretycznych przedstawionych na wykładach i w stanie zastosować tę wiedzą do rozwiązania zadań określonych na zajęciach laboratoryjnych.
4,0Student wykazał dobre umiejętności zastosowania wiedzy zdobytej na wykładach do rozwiązania wiekszości zadań określonych na zajęciach laboratoryjnych, ale niekiedy myli się w szczególach tych czy inncyh algorytmów.
4,5tudent wykazał dobre umiejętności zastosowania wiedzy ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale niekiedy nie wykazuje dobre umiejętności posługiwania się alternatywnymi metodami i algorytmami rozwiązania problemów.
5,0Student wykazał bardzo dobre umiejętności wykorzystania wiedzy zdobytej na wykładach do rozwiązania problemów proponowanych na zajęciach laboratoryjnych, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, a ponadto proponuje swoje własne rozwiązania dysponująć wiedzą ze wszystkich algorytmów opanowanych na wykładach i wykazuje zdolność do kreatywności muszłenia

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ZIIP_2A_C05_K01
Jest świadomy roli i potrzeby dokształcania
2,0Student nie wykazał kompetencji z tematów teoretycznych przedstawionych na wykładach i nie wykonał wszystkie zadania na zajęciach laboratoryjnych.
3,0Student wykazał bardzo słabą kompetencję z tematów teoretycznych przedstawionych na wykładach i nie w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych.
3,5Student wykazał słabą kompetencję z tematów teoretycznych przedstawionych na wykładach, ale w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych.
4,0Student wykazał dobrą kompetencję z większości tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale nie wykazał dobrą kompetencję w analizę metod alternatywnych rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
4,5Student wykazał dobrą kompetencję ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale niekiedy nie wykazue dobrą kompetencję w ocenie zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
5,0Student wykazał bardzo dobrą kompetencję ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, i wykazuje bardzo dobrą kompetencję w analizę zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.

Literatura podstawowa

  1. StatSoft, Techniki zgłębiania danych (data mining), StatSoft, Online, 2011, Dostępne online: http://www.statsoft.pl/textbook/stathome_stat.html?http%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstdatmin.html
  2. David Carasso, Exploring Splunk. Search Processing Language (SPL) Primer and Cookbook, SPLUNK, San Francisco, USA, 2012, wydanie elektroniczne (w j. angielskim) - PDF dostępny online u wydawcy, http://www.splunk.com/web_assets/v5/book/Exploring_Splunk.pdf
  3. D.N. Larose, Data Mining Methods and Models, Wiley Publishing, Inc., 2006
  4. C. Vercellis, Business Intelligence: Data Mining and Optimization for Decision Making, Wiley Publishing, Inc., 2009
  5. L. Wang, X. Fu, Data Mining with Computational Intelligence, Springer-Verlag, Berlin; Heidelberg, 2005

Literatura dodatkowa

  1. H. A. Abbas, R.A. Sarker, C. S. Newton, Data Mining: A Heuristic Approach, University of New South Wales, Idea Group Publishing, Australia, 2002
  2. M. Berthold, D.J. Hand (eds.), Intelligent Data Analysis, Springer-Verlag, Berlin; Heidelberg, 2007
  3. J. Han. M. Kambler, Data Mining: Concepts and Techniques, Elsevier Inc., SZA, 2006

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Rozwiązanie problemów klasyfikacji zbiorów danych4
T-L-2Badanie technik budowy drzew klasyfikacyjnych4
T-L-3Badanie metod regresji : regresja liniowa i nieliniowa, drzewa regresyjne, regresja wielu zmiennych4
T-L-4Badanie metod analizy szeregów czasowych2
14

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia związane z analizą danych i procesów. Podejście procesowe jako jedna z zasad zarządzania procesami w przedsiębiorstwie.2
T-W-2Podstawy analityki biznesowej. Mechanizmy sterujące procesami w przedsiębiorstwie, mierzenie wydajności procesów produkcyjnych, optymalizacja procesów. Systemy informowania kierownictwa (EIS), systemy wspomagania decyzji (DSS), systemy informacyjne zarządzania (MIS).4
T-W-3Metody klasyfikacji i regresji * Metody tworzenia reguł klasyfikacyjnych * Metody tworzenia drzew decyzyjnych * Metody tworzenia funkcji matematycznych * Prognostyka procesów4
T-W-4Klasteryzacja * Oceny błiskości elementów zbiorów oparte na miarach odłegłości * Podstawowe algorytmy klasteryzacji * Adaptacyjne algorytmy klasteryzacji2
T-W-5Mapowanie procesów przemysłowych. Narządzania do analizy i mapowania procesów. Przykłady analizy danych i procesów w przedsiębiorstwie.2
14

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Studiowanie literatury, przygotowanie się do zajęć14
A-L-2Udział w zajęciach laboratoryjnych14
A-L-3Konsultacje, przygotowanie sprawozdań i zaliczenie12
40
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Studiowanie literatury, przygotowanie do zajęć14
A-W-2Uczęszczenie na wykłady14
A-W-3Konsultacje z tematów wykładów, zaliczenie12
40
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_2A_C05_W01ma wiedzę w zakresie technologii analizy danych, tworzenia modeli procesów produkcyjnych, wstępnej obróbki danych stosowania reduktów w dużych zbiorów danych a także zna podstawowe metody i algorytmy exploracji danych (klasyfikacja i klasteryzacja) oraz badania i prognozowania procesów.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_2A_W04ma uporządkowaną wiedzę z zakresu planowania, optymalizacji, oceny i prognozowania wyników
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Celem jest poznanie metod analizy danych, w tym dużych zbiorów danych, technik wyszukiwania wiedzy w zbiorach danych i wizualizacji danych oraz nabycie umiejętnosci rozwiązania problemów klasyfikacji i klasteryzacji danych, budowania modeli procesów (technologicznych, ekonomicznych, biznesowych, itp.) oraz poznanie metod mapowania i wizualizacji w/w procesów.
Treści programoweT-W-4Klasteryzacja * Oceny błiskości elementów zbiorów oparte na miarach odłegłości * Podstawowe algorytmy klasteryzacji * Adaptacyjne algorytmy klasteryzacji
T-W-1Podstawowe pojęcia związane z analizą danych i procesów. Podejście procesowe jako jedna z zasad zarządzania procesami w przedsiębiorstwie.
T-W-3Metody klasyfikacji i regresji * Metody tworzenia reguł klasyfikacyjnych * Metody tworzenia drzew decyzyjnych * Metody tworzenia funkcji matematycznych * Prognostyka procesów
T-W-2Podstawy analityki biznesowej. Mechanizmy sterujące procesami w przedsiębiorstwie, mierzenie wydajności procesów produkcyjnych, optymalizacja procesów. Systemy informowania kierownictwa (EIS), systemy wspomagania decyzji (DSS), systemy informacyjne zarządzania (MIS).
T-W-5Mapowanie procesów przemysłowych. Narządzania do analizy i mapowania procesów. Przykłady analizy danych i procesów w przedsiębiorstwie.
Metody nauczaniaM-1Wykłady
Sposób ocenyS-1Ocena formująca: Ocena na podstawie sprawozdań z wykonanych ćwiczeń, terminowości wykonania zadań i zaliczeń oraz odpowiedzi na pytania wykładowcy zadawane podczas zaliczenia.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie wykazał wiedzy z tematów teoretycznych przedstawionych na wykładach i nie wykonał wszystkie zadania na zajęciach laboratoryjnych.
3,0Student wykazał bardzo słąbą wiedzę z tematów teoretycznych przedstawionych na wykładach i nie wykonał wszystkie zadania na zajęciach laboratoryjnych.
3,5Student wykazał słabą wiedzę kompetencję z tematów teoretycznych przedstawionych na wykładach, ale w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych.
4,0Student wykazał dobrą wiedzę z większości tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale nie wykazał dobrą wiedzę w analizę metod alternatywnych rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
4,5Student wykazał dobrą wiedzę ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale niekiedy myli się w ocenie zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
5,0Student wykazał bardzo dobrą wiedzę ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, i w stanie przedstawić dokładną i pełną analizę zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_2A_C05_U01Potrafi zastosować poznane metody do studium przypadku
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
ZIIP_2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
Cel przedmiotuC-1Celem jest poznanie metod analizy danych, w tym dużych zbiorów danych, technik wyszukiwania wiedzy w zbiorach danych i wizualizacji danych oraz nabycie umiejętnosci rozwiązania problemów klasyfikacji i klasteryzacji danych, budowania modeli procesów (technologicznych, ekonomicznych, biznesowych, itp.) oraz poznanie metod mapowania i wizualizacji w/w procesów.
Metody nauczaniaM-1Wykłady
Sposób ocenyS-1Ocena formująca: Ocena na podstawie sprawozdań z wykonanych ćwiczeń, terminowości wykonania zadań i zaliczeń oraz odpowiedzi na pytania wykładowcy zadawane podczas zaliczenia.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie wykazał umiejętności wykorzystania wiedzy z teorii analizy danych i porocesów do wykonania zadań na zajęciach laboratoryjnych.
3,0Student wykazał słabą umiejętnośc posługiwania wiedą teoretyczną do rozwiązania zadań na zajęciach laboratoryjnych i w stanie rozwiązywać nie zbyt trudne problemy.
3,5Student wykazał pewną kompetencję z tematów teoretycznych przedstawionych na wykładach i w stanie zastosować tę wiedzą do rozwiązania zadań określonych na zajęciach laboratoryjnych.
4,0Student wykazał dobre umiejętności zastosowania wiedzy zdobytej na wykładach do rozwiązania wiekszości zadań określonych na zajęciach laboratoryjnych, ale niekiedy myli się w szczególach tych czy inncyh algorytmów.
4,5tudent wykazał dobre umiejętności zastosowania wiedzy ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale niekiedy nie wykazuje dobre umiejętności posługiwania się alternatywnymi metodami i algorytmami rozwiązania problemów.
5,0Student wykazał bardzo dobre umiejętności wykorzystania wiedzy zdobytej na wykładach do rozwiązania problemów proponowanych na zajęciach laboratoryjnych, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, a ponadto proponuje swoje własne rozwiązania dysponująć wiedzą ze wszystkich algorytmów opanowanych na wykładach i wykazuje zdolność do kreatywności muszłenia
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_2A_C05_K01Jest świadomy roli i potrzeby dokształcania
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_2A_K01ma świadomość potrzeby dokształcania, potrafi inspirować i organizować proces uczenia się innych osób
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-1Celem jest poznanie metod analizy danych, w tym dużych zbiorów danych, technik wyszukiwania wiedzy w zbiorach danych i wizualizacji danych oraz nabycie umiejętnosci rozwiązania problemów klasyfikacji i klasteryzacji danych, budowania modeli procesów (technologicznych, ekonomicznych, biznesowych, itp.) oraz poznanie metod mapowania i wizualizacji w/w procesów.
Metody nauczaniaM-1Wykłady
Sposób ocenyS-1Ocena formująca: Ocena na podstawie sprawozdań z wykonanych ćwiczeń, terminowości wykonania zadań i zaliczeń oraz odpowiedzi na pytania wykładowcy zadawane podczas zaliczenia.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie wykazał kompetencji z tematów teoretycznych przedstawionych na wykładach i nie wykonał wszystkie zadania na zajęciach laboratoryjnych.
3,0Student wykazał bardzo słabą kompetencję z tematów teoretycznych przedstawionych na wykładach i nie w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych.
3,5Student wykazał słabą kompetencję z tematów teoretycznych przedstawionych na wykładach, ale w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych.
4,0Student wykazał dobrą kompetencję z większości tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale nie wykazał dobrą kompetencję w analizę metod alternatywnych rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
4,5Student wykazał dobrą kompetencję ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, ale niekiedy nie wykazue dobrą kompetencję w ocenie zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.
5,0Student wykazał bardzo dobrą kompetencję ze wszystkich tematów teoretycznych przedstawionych na wykładach, w pełnym stopniu wykonał zadania na zajęciach laboratoryjnych, i wykazuje bardzo dobrą kompetencję w analizę zalet i wad metod rozwiązania charakterystycznych problemów z dziedziny analizy danych i procesów.