Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Kształtowania Środowiska i Rolnictwa - Ochrona środowiska (N1)

Sylabus przedmiotu Podstawy inżynierii procesowej:

Informacje podstawowe

Kierunek studiów Ochrona środowiska
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk rolniczych, leśnych i weterynaryjnych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy inżynierii procesowej
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Fizyki i Agrofizyki
Nauczyciel odpowiedzialny Romualda Bejger <Romualda.Bejger@zut.edu.pl>
Inni nauczyciele Andrzej Gawlik <Andrzej.Gawlik@zut.edu.pl>, Renata Matuszak-Slamani <Renata.Matuszak@zut.edu.pl>, Lilla Mielnik <Lilla.Mielnik@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW6 12 1,00,62zaliczenie
laboratoriaL6 6 0,50,00zaliczenie
ćwiczenia audytoryjneA6 6 0,50,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wymagana znajomość podstaw fizyki, matematyki, chemii fizycznej

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Głównym celem zajęć jest przekazanie studentom podstawowej wiedzy z zakresu inżynierii procesowej, w tym zapoznanie studentów z procesami mechanicznymi, dynamicznymi, cieplnymi i dyfuzyjnymi.
C-2Przygotowanie studentów do wykonywania podstawowych obliczeń inżynierskich z zakresu inżynierii procesowej.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Obliczanie właściwości fizykochemicznych płynów.1
T-A-2Przepływ płynów – prawo ciągłości przepływu, ciśnienie cieczy w przewodzie; prawo Bernoulli’ego; prawo Poiseuille’a, liczba Reynoldsa - zadania2
T-A-3Podstawy ruchu ciepła – elementarne mechanizmy ruchu ciepła (prawo Fouriera, prawo Stefana-Boltzmana, prawo Wiena) - zadania2
T-A-4Pisemne zaliczenie z ćwiczeń audytoryjnych1
6
wykłady
T-W-1Definicja i istota inżynierii procesowej. Definicja procesu. Procesy wymiany masy (dyfuzja, wnikanie i przenikanie masy).2
T-W-2Mechaniczna wymiana ciepła (przewodzenie, konwekcja, wymiana drogą promienistą).2
T-W-3Własności płynów. Płyny nienewtonowskie. Przepływ płynów doskonałych. Równanie Bernoulliego. Pomiar prędkości przepływu. Przepływ płynów rzeczywistych. Przepływ laminarny i turbulentny.3
T-W-4Przepływ płynów przez warstwy porowate (nieruchome wypełnienia). Mieszanie i napowietrzanie płynów.2
T-W-5Ruch ciał stałych w płynach (sedymentacja, fluidyzacja). Rozdzielanie zawiesin ciał stałych w płynach (filtracja, odwirowanie, flotacja, odpylanie).2
T-W-6Pisemne zaliczenie w formie testowej materiału z wykładów.1
12
laboratoria
0

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Udział studenta w ćwiczeniach audytoryjnych10
A-A-2Samodzielne studiowanie zagadnień teoretycznych przekazanych na ćwiczeniach i rozwiązywanie modelowych zadań.8
A-A-3Konsultacje.7
A-A-4Przygotowanie do pisemnego zaliczenia ćwiczeń audytoryjnych4
A-A-5Pisemne zaliczenie ćwiczeń audytoryjnych.1
30
wykłady
A-W-1Udział studenta w wykładach.15
A-W-2Czytanie wskazanej literatury.12
A-W-3Samodzielne studiowanie tematyki wykładów.12
A-W-4Konsultacje.10
A-W-5Przygotowanie się do pisemnego zaliczenia wykładów.10
A-W-6Pisemne zaliczenie wykładów.1
60
laboratoria
0

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z wykorzystaniem prezentacji multimedialnych.
M-2Metody problemowe (rozwiązywanie zadań, omawianie wyników obliczeń rachunkowych, dyskusja)

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena aktywności studentów na ćwiczeniach audytoryjnych.
S-2Ocena podsumowująca: Pisemne zaliczenie materiału z zakresu ćwiczeń audytoryjnych.
S-3Ocena podsumowująca: Pisemne zaliczenie w formie testowej wykładów.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
OS_1A_C15_W01
Student zna i rozumie podstawowe procesy z zakresu inżynierii procesowej. Student zna zasady i metody stosowane przy rozwiązywaniu prostych zadań inżynierskich. Student zna wzory, jednostki i wielkości fizyczne.
OS_1A_W05R1A_W01, R1A_W03InzA_W01C-2, C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-A-3, T-A-1, T-A-4, T-A-2M-2, M-1S-3, S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
OS_1A_C15_U01
Student potrafi opisać elementrane procesy z zakresu inżynierii procesowej. Student potrafi rozwiązywać proste zadania inżynierskie oraz wyciągać na ich podstawie wnioski. Student potrafi pracować samodzielnie i w zespole.
OS_1A_U05, OS_1A_U01, OS_1A_U04R1A_U01, R1A_U02, R1A_U03, R1A_U04InzA_U01, InzA_U02, InzA_U03, InzA_U08C-2, C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-A-3, T-A-1, T-A-4, T-A-2M-2, M-1S-3, S-1, S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
OS_1A_C15_K01
Student wykazuje kreatywną postawę w rozwiązywaniu powierzonych mu zadań. Potrafi aktywnie uczestniczyć w pracy grupowej, podejmuje również samodzielne inicjatywy, wykazuje się odpowiedzialną postawą i sumiennością w zdobywaniu wiedzy.
OS_1A_K07R1A_K08InzA_K02C-2, C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-A-3, T-A-1, T-A-4, T-A-2M-2, M-1S-3, S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
OS_1A_C15_W01
Student zna i rozumie podstawowe procesy z zakresu inżynierii procesowej. Student zna zasady i metody stosowane przy rozwiązywaniu prostych zadań inżynierskich. Student zna wzory, jednostki i wielkości fizyczne.
2,0
3,0Student w stopniu dostatecznym opanował omawiany zakres materiału z inżynierii procesowej. Zna podstawowe wzory, jednostki i wielkości fizyczne. Zna podstawowe zasady i metody rozwiązywania typowych zadań inżynierskich.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
OS_1A_C15_U01
Student potrafi opisać elementrane procesy z zakresu inżynierii procesowej. Student potrafi rozwiązywać proste zadania inżynierskie oraz wyciągać na ich podstawie wnioski. Student potrafi pracować samodzielnie i w zespole.
2,0
3,0Student posiada dostateczne umiejętności z zakresu inżynierii procesowej. . Rozwiązuje typowe zadania inżynierskie. Stosuje prawidłowo podstawowe wzory, jednostki i wielkości fizyczne. Student prezentuje "suche" wyniki bez umiejętności ich analizy.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
OS_1A_C15_K01
Student wykazuje kreatywną postawę w rozwiązywaniu powierzonych mu zadań. Potrafi aktywnie uczestniczyć w pracy grupowej, podejmuje również samodzielne inicjatywy, wykazuje się odpowiedzialną postawą i sumiennością w zdobywaniu wiedzy.
2,0
3,0Student wykazuje zainteresowanie zdobywaniem wiedzy poprzez wyrarażanie własnych poglądów na przekazywane treści.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. praca zbiorowa pod red. Piotra P. Lewickiego, Inżynieria procesowa i aparatura przemysłu spożywczego, Wydawnictwa Naukowo-Techniczne, Warszawa, 2005, Wyd. 4
  2. Lubomira Broniarz-Press [et al.], Inżynieria chemiczna i procesowa : materiały pomocnicze. Cz. 3 - Procesy wymiany masy., Wydawnictwo Politechniki Poznańskiej., Poznań :, 2005
  3. Stefan Jan Kowalski., Inżynieria materiałów porowatych, Wydawnictwo Politechniki Poznańskiej, Poznań, 2004
  4. Ryszard Kramkowski, Inżynieria procesowa. Przewodnik do ćwiczeń rachunkowych, Wydawnictwo Akademii Rolniczej we Wrocławiu, Wrocław, 2000

Literatura dodatkowa

  1. red. działowy Andrzej Kulig, Współczesne problemy inżynierii i ochrony środowiska, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2012

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Obliczanie właściwości fizykochemicznych płynów.1
T-A-2Przepływ płynów – prawo ciągłości przepływu, ciśnienie cieczy w przewodzie; prawo Bernoulli’ego; prawo Poiseuille’a, liczba Reynoldsa - zadania2
T-A-3Podstawy ruchu ciepła – elementarne mechanizmy ruchu ciepła (prawo Fouriera, prawo Stefana-Boltzmana, prawo Wiena) - zadania2
T-A-4Pisemne zaliczenie z ćwiczeń audytoryjnych1
6

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Definicja i istota inżynierii procesowej. Definicja procesu. Procesy wymiany masy (dyfuzja, wnikanie i przenikanie masy).2
T-W-2Mechaniczna wymiana ciepła (przewodzenie, konwekcja, wymiana drogą promienistą).2
T-W-3Własności płynów. Płyny nienewtonowskie. Przepływ płynów doskonałych. Równanie Bernoulliego. Pomiar prędkości przepływu. Przepływ płynów rzeczywistych. Przepływ laminarny i turbulentny.3
T-W-4Przepływ płynów przez warstwy porowate (nieruchome wypełnienia). Mieszanie i napowietrzanie płynów.2
T-W-5Ruch ciał stałych w płynach (sedymentacja, fluidyzacja). Rozdzielanie zawiesin ciał stałych w płynach (filtracja, odwirowanie, flotacja, odpylanie).2
T-W-6Pisemne zaliczenie w formie testowej materiału z wykładów.1
12

Treści programowe - laboratoria

KODTreść programowaGodziny
0

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Udział studenta w ćwiczeniach audytoryjnych10
A-A-2Samodzielne studiowanie zagadnień teoretycznych przekazanych na ćwiczeniach i rozwiązywanie modelowych zadań.8
A-A-3Konsultacje.7
A-A-4Przygotowanie do pisemnego zaliczenia ćwiczeń audytoryjnych4
A-A-5Pisemne zaliczenie ćwiczeń audytoryjnych.1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział studenta w wykładach.15
A-W-2Czytanie wskazanej literatury.12
A-W-3Samodzielne studiowanie tematyki wykładów.12
A-W-4Konsultacje.10
A-W-5Przygotowanie się do pisemnego zaliczenia wykładów.10
A-W-6Pisemne zaliczenie wykładów.1
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
0
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaOS_1A_C15_W01Student zna i rozumie podstawowe procesy z zakresu inżynierii procesowej. Student zna zasady i metody stosowane przy rozwiązywaniu prostych zadań inżynierskich. Student zna wzory, jednostki i wielkości fizyczne.
Odniesienie do efektów kształcenia dla kierunku studiówOS_1A_W05Identyfikuje zjawiska oraz fizyczne i chemiczne procesy zachodzące w biosferze. Zna podstawy techniki kształtowania środowiska. Zna podstawowy cykl życia urządzeń, obiektów i systemów technicznych związanych z ochroną i kształtowaniem środowiska.
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaR1A_W01ma podstawową wiedzę z zakresu biologii, chemii, matematyki, fizyki i nauk pokrewnych dostosowaną do studiowanego kierunku studiów
R1A_W03ma ogólną wiedzę na temat biosfery, chemicznych i fizycznych procesów w niej zachodzących, właściwości surowców roślinnych i zwierzęcych, podstaw techniki i kształtowania środowiska dostosowaną do studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W01ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
Cel przedmiotuC-2Przygotowanie studentów do wykonywania podstawowych obliczeń inżynierskich z zakresu inżynierii procesowej.
C-1Głównym celem zajęć jest przekazanie studentom podstawowej wiedzy z zakresu inżynierii procesowej, w tym zapoznanie studentów z procesami mechanicznymi, dynamicznymi, cieplnymi i dyfuzyjnymi.
Treści programoweT-W-1Definicja i istota inżynierii procesowej. Definicja procesu. Procesy wymiany masy (dyfuzja, wnikanie i przenikanie masy).
T-W-2Mechaniczna wymiana ciepła (przewodzenie, konwekcja, wymiana drogą promienistą).
T-W-3Własności płynów. Płyny nienewtonowskie. Przepływ płynów doskonałych. Równanie Bernoulliego. Pomiar prędkości przepływu. Przepływ płynów rzeczywistych. Przepływ laminarny i turbulentny.
T-W-4Przepływ płynów przez warstwy porowate (nieruchome wypełnienia). Mieszanie i napowietrzanie płynów.
T-W-5Ruch ciał stałych w płynach (sedymentacja, fluidyzacja). Rozdzielanie zawiesin ciał stałych w płynach (filtracja, odwirowanie, flotacja, odpylanie).
T-W-6Pisemne zaliczenie w formie testowej materiału z wykładów.
T-A-3Podstawy ruchu ciepła – elementarne mechanizmy ruchu ciepła (prawo Fouriera, prawo Stefana-Boltzmana, prawo Wiena) - zadania
T-A-1Obliczanie właściwości fizykochemicznych płynów.
T-A-4Pisemne zaliczenie z ćwiczeń audytoryjnych
T-A-2Przepływ płynów – prawo ciągłości przepływu, ciśnienie cieczy w przewodzie; prawo Bernoulli’ego; prawo Poiseuille’a, liczba Reynoldsa - zadania
Metody nauczaniaM-2Metody problemowe (rozwiązywanie zadań, omawianie wyników obliczeń rachunkowych, dyskusja)
M-1Wykład informacyjny z wykorzystaniem prezentacji multimedialnych.
Sposób ocenyS-3Ocena podsumowująca: Pisemne zaliczenie w formie testowej wykładów.
S-1Ocena formująca: Ocena aktywności studentów na ćwiczeniach audytoryjnych.
S-2Ocena podsumowująca: Pisemne zaliczenie materiału z zakresu ćwiczeń audytoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student w stopniu dostatecznym opanował omawiany zakres materiału z inżynierii procesowej. Zna podstawowe wzory, jednostki i wielkości fizyczne. Zna podstawowe zasady i metody rozwiązywania typowych zadań inżynierskich.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaOS_1A_C15_U01Student potrafi opisać elementrane procesy z zakresu inżynierii procesowej. Student potrafi rozwiązywać proste zadania inżynierskie oraz wyciągać na ich podstawie wnioski. Student potrafi pracować samodzielnie i w zespole.
Odniesienie do efektów kształcenia dla kierunku studiówOS_1A_U05Wykonuje samodzielnie lub w zespole pod kierunkiem opiekuna proste zadania badawcze związane z obserwacjami środowiskowymi. Prawidłowo interpretuje rezultaty i wyciąga wnioski, potrafi przy formułowaniu i rozwiązywaniu zadań inżynierskich dostrzegać ich aspekty systemowe i pozatechniczne. Potrafi zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi.
OS_1A_U01Posiada umiejętność wyszukiwania, zrozumienia, analizy i wykorzystywania potrzebnych informacji pochodzących z różnych źródeł. Potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich, posiada umiejętność stosowania metod analitycznych, symulacyjnych oraz eksperymentalnych.
OS_1A_U04Stosuje podstawowe technologie informatyczne w zakresie pozyskiwania i przetwarzania informacji z zakresu produkcji rolniczej i przemysłowej, potrafi przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaR1A_U01posiada umiejętność wyszukiwania, zrozumienia, analizy i wykorzystywania potrzebnych informacji pochodzących z różnych źródeł i w różnych formach właściwych dla studiowanego kierunku studiów
R1A_U02posiada umiejętność precyzyjnego porozumiewania się z różnymi podmiotami w formie werbalnej, pisemnej i graficznej
R1A_U03stosuje podstawowe technologie informatyczne w zakresie pozyskiwania i przetwarzania informacji z zakresu produkcji rolniczej i leśnej
R1A_U04wykonuje pod kierunkiem opiekuna naukowego proste zadanie badawcze lub projektowe dotyczące szeroko rozumianego rolnictwa, prawidłowo interpretuje rezultaty i wyciąga wnioski
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-2Przygotowanie studentów do wykonywania podstawowych obliczeń inżynierskich z zakresu inżynierii procesowej.
C-1Głównym celem zajęć jest przekazanie studentom podstawowej wiedzy z zakresu inżynierii procesowej, w tym zapoznanie studentów z procesami mechanicznymi, dynamicznymi, cieplnymi i dyfuzyjnymi.
Treści programoweT-W-1Definicja i istota inżynierii procesowej. Definicja procesu. Procesy wymiany masy (dyfuzja, wnikanie i przenikanie masy).
T-W-2Mechaniczna wymiana ciepła (przewodzenie, konwekcja, wymiana drogą promienistą).
T-W-3Własności płynów. Płyny nienewtonowskie. Przepływ płynów doskonałych. Równanie Bernoulliego. Pomiar prędkości przepływu. Przepływ płynów rzeczywistych. Przepływ laminarny i turbulentny.
T-W-4Przepływ płynów przez warstwy porowate (nieruchome wypełnienia). Mieszanie i napowietrzanie płynów.
T-W-5Ruch ciał stałych w płynach (sedymentacja, fluidyzacja). Rozdzielanie zawiesin ciał stałych w płynach (filtracja, odwirowanie, flotacja, odpylanie).
T-W-6Pisemne zaliczenie w formie testowej materiału z wykładów.
T-A-3Podstawy ruchu ciepła – elementarne mechanizmy ruchu ciepła (prawo Fouriera, prawo Stefana-Boltzmana, prawo Wiena) - zadania
T-A-1Obliczanie właściwości fizykochemicznych płynów.
T-A-4Pisemne zaliczenie z ćwiczeń audytoryjnych
T-A-2Przepływ płynów – prawo ciągłości przepływu, ciśnienie cieczy w przewodzie; prawo Bernoulli’ego; prawo Poiseuille’a, liczba Reynoldsa - zadania
Metody nauczaniaM-2Metody problemowe (rozwiązywanie zadań, omawianie wyników obliczeń rachunkowych, dyskusja)
M-1Wykład informacyjny z wykorzystaniem prezentacji multimedialnych.
Sposób ocenyS-3Ocena podsumowująca: Pisemne zaliczenie w formie testowej wykładów.
S-1Ocena formująca: Ocena aktywności studentów na ćwiczeniach audytoryjnych.
S-2Ocena podsumowująca: Pisemne zaliczenie materiału z zakresu ćwiczeń audytoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student posiada dostateczne umiejętności z zakresu inżynierii procesowej. . Rozwiązuje typowe zadania inżynierskie. Stosuje prawidłowo podstawowe wzory, jednostki i wielkości fizyczne. Student prezentuje "suche" wyniki bez umiejętności ich analizy.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaOS_1A_C15_K01Student wykazuje kreatywną postawę w rozwiązywaniu powierzonych mu zadań. Potrafi aktywnie uczestniczyć w pracy grupowej, podejmuje również samodzielne inicjatywy, wykazuje się odpowiedzialną postawą i sumiennością w zdobywaniu wiedzy.
Odniesienie do efektów kształcenia dla kierunku studiówOS_1A_K07Jest kreatywny i zdeterminowany w rozwiązywaniu problemów badawczych i ekonomicznych oraz wykazuje się przedsiębiorczością w realizacji postawionych zadań
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaR1A_K08potrafi myśleć i działać w sposób przedsiębiorczy
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_K02potrafi myśleć i działać w sposób przedsiębiorczy
Cel przedmiotuC-2Przygotowanie studentów do wykonywania podstawowych obliczeń inżynierskich z zakresu inżynierii procesowej.
C-1Głównym celem zajęć jest przekazanie studentom podstawowej wiedzy z zakresu inżynierii procesowej, w tym zapoznanie studentów z procesami mechanicznymi, dynamicznymi, cieplnymi i dyfuzyjnymi.
Treści programoweT-W-1Definicja i istota inżynierii procesowej. Definicja procesu. Procesy wymiany masy (dyfuzja, wnikanie i przenikanie masy).
T-W-2Mechaniczna wymiana ciepła (przewodzenie, konwekcja, wymiana drogą promienistą).
T-W-3Własności płynów. Płyny nienewtonowskie. Przepływ płynów doskonałych. Równanie Bernoulliego. Pomiar prędkości przepływu. Przepływ płynów rzeczywistych. Przepływ laminarny i turbulentny.
T-W-4Przepływ płynów przez warstwy porowate (nieruchome wypełnienia). Mieszanie i napowietrzanie płynów.
T-W-5Ruch ciał stałych w płynach (sedymentacja, fluidyzacja). Rozdzielanie zawiesin ciał stałych w płynach (filtracja, odwirowanie, flotacja, odpylanie).
T-W-6Pisemne zaliczenie w formie testowej materiału z wykładów.
T-A-3Podstawy ruchu ciepła – elementarne mechanizmy ruchu ciepła (prawo Fouriera, prawo Stefana-Boltzmana, prawo Wiena) - zadania
T-A-1Obliczanie właściwości fizykochemicznych płynów.
T-A-4Pisemne zaliczenie z ćwiczeń audytoryjnych
T-A-2Przepływ płynów – prawo ciągłości przepływu, ciśnienie cieczy w przewodzie; prawo Bernoulli’ego; prawo Poiseuille’a, liczba Reynoldsa - zadania
Metody nauczaniaM-2Metody problemowe (rozwiązywanie zadań, omawianie wyników obliczeń rachunkowych, dyskusja)
M-1Wykład informacyjny z wykorzystaniem prezentacji multimedialnych.
Sposób ocenyS-3Ocena podsumowująca: Pisemne zaliczenie w formie testowej wykładów.
S-1Ocena formująca: Ocena aktywności studentów na ćwiczeniach audytoryjnych.
S-2Ocena podsumowująca: Pisemne zaliczenie materiału z zakresu ćwiczeń audytoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student wykazuje zainteresowanie zdobywaniem wiedzy poprzez wyrarażanie własnych poglądów na przekazywane treści.
3,5
4,0
4,5
5,0