Wydział Elektryczny - Automatyka i robotyka (S1)
Sylabus przedmiotu Projektowanie systemów kontrolno-pomiarowych:
Informacje podstawowe
Kierunek studiów | Automatyka i robotyka | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Projektowanie systemów kontrolno-pomiarowych | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Automatyki Przemysłowej i Robotyki | ||
Nauczyciel odpowiedzialny | Krzysztof Pietrusewicz <Krzysztof.Pietrusewicz@zut.edu.pl> | ||
Inni nauczyciele | Paweł Dworak <Pawel.Dworak@zut.edu.pl>, Krzysztof Pietrusewicz <Krzysztof.Pietrusewicz@zut.edu.pl>, Paweł Waszczuk <Pawel.Waszczuk@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 5 | Grupa obieralna | 2 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wiedza z matematyki, informatyki, podstaw automatyki, techniki mikroprocesorowej, cyfrowego przetwarzania sygnałów. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Nauczenie studentów i zaznajomienie z graficznym sposobem projektowania układów sterowania w środowisku LabVIEW. Celem uzupełniającym jest przygotowanie w zakresie merytorycznym studentów do certyfikatu CLAD (National Instruments) |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Elementy VI (wirtualnego instrumentu) – opracowanego w środowisku inżynierskim LabVIEW. Przygotowanie pierwszego programu | 3 |
T-L-2 | Metody wyszukiwania i naprawiania błędów w plikach VI | 3 |
T-L-3 | Elementy sterujące przepływem obliczeń – pętle, warunki, maszyna stanów | 5 |
T-L-4 | Typy danych, metody grupowania danych w oprogramowaniu LabVIEW | 4 |
T-L-5 | Zapis/odczyt do/z pliku danych, funkcje wysokiego i niskiego poziomu w obsłudze plików | 4 |
T-L-6 | Tworzenie aplikacji modułowych i podprogramów | 4 |
T-L-7 | Techniki projektowe w LabVIEW | 4 |
T-L-8 | Korzystanie z wzorców projektowych LabVIEW | 3 |
30 | ||
wykłady | ||
T-W-1 | Systemy DAQ - wprowadzenie, architektura, zasada działania | 2 |
T-W-2 | Systemy sterowania – wprowadzenie, architektura, kiedyś i dziś. Systemy kontrolno-pomiarowe czasu rzeczywistego vs. klasyczne PLC | 2 |
T-W-3 | Oprogramowanie dla systemów RT: nauka a przemysł – zagadnienia. Oprogramowanie symulacyjne a zagadnienia generowania kodu | 2 |
T-W-4 | Modelowanie złożonych systemów kontrolno-pomiarowych z użyciem języków UML, SysML, EAST-ADL | 2 |
T-W-5 | Diagramy SysML, omówienie rodzajów diagramów, narzędzia modelowania SysML | 2 |
T-W-6 | Modelowanie wymagań z zastosowaniem SysML. Diagramy przypadków użycia przykładowego systemu kontrolno-pomiarowego | 3 |
T-W-7 | Modelowanie architektury systemu kontrolno-pomiarowego z zastosowaniem SysML. Zadanie projektowe – omówienie przykładu | 2 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Studia literaturowe | 5 |
A-L-2 | Zapoznanie z materiałami on-line (webinaria tematyczne) | 5 |
A-L-3 | Udział w zajęciach | 30 |
A-L-4 | Opracowanie sprawozdań | 20 |
60 | ||
wykłady | ||
A-W-1 | Studia literaturowe | 25 |
A-W-2 | Udział w zajęciach | 15 |
A-W-3 | Analiza stanu techniki na bazie źródeł internetowych | 20 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny |
M-2 | Wykład problemowy |
M-3 | Zajęcia laboratoryjne |
M-4 | Metoda projektów |
M-5 | Pokaz |
M-6 | Ćwiczenia laboratoryjne |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena wystawiana w trakcie zajęć laboratoryjnych na podstawie pisemnych prac zaliczeniowych oraz aktywności podczas zajęć. |
S-2 | Ocena podsumowująca: Ocena wystawiana na podstawie pisemnego i praktycznego zaliczenia końcowego. |
S-3 | Ocena podsumowująca: Ocena wystawiana na podstawie sprawozdania z projektu. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_1A_C27.2_W01 Student ma uporządkowaną wiedzę z zakresu: - elementów wykonawczych automatyki przemysłowej, zna ich ograniczenia wynikające z wymagań środowiskowych, a także zna stan aktualny i tendencje rozwojowe w tym zakresie, - programowalnych urządzeń automatyki oraz metod projektowania układów wykorzystujących te urządzenia, - komputerowego wspomagania projektowania układów automatyki, w tym cyfrowego sterowania i pomiarów dynamicznych w czasie rzeczywistym. | AR_1A_W03 | — | — | C-1 | T-W-1, T-W-2 | M-1, M-2 | S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_1A_C27.2_U01 Potrafi: - dobrać elementy wykonawcze cyfrowego systemu kontrolno-pomiarowego czasu rzeczywistego, - dobrać typowe metody pomiaru oraz odpowiednie czujniki i przetworniki do pomiaru zjawisk dynamicznych (w tym drgań), a także ocenić przydatność nowych rozwiązań z tego obszaru do realizacji zadań cyfrowego przetwarzania sygnałów i sterowania w czasie rzeczywistym, - wykorzystać dostępne narzędzia informatyczne do projektowania i symulacji systemów kontrolno-pomiarowych czasu rzeczywistego, - sformułować zadanie sterowania w czasie rzeczywistym, zaprojektować architekturę sprzętowo-programową układu sterowania oraz zoptymalizować jego działanie po uruchomieniu. | AR_1A_U06, AR_1A_U07, AR_1A_U09, AR_1A_U19 | — | — | C-1 | T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8 | M-3, M-4 | S-1 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
AR_1A_C27.2_K01 Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole projektowym, jak również ponoszenia odpowiedzialności za wspólne i indywidualnie realizowane zadania. | AR_1A_K04 | — | — | C-1 | T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8 | M-3, M-4 | S-1, S-3 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
AR_1A_C27.2_W01 Student ma uporządkowaną wiedzę z zakresu: - elementów wykonawczych automatyki przemysłowej, zna ich ograniczenia wynikające z wymagań środowiskowych, a także zna stan aktualny i tendencje rozwojowe w tym zakresie, - programowalnych urządzeń automatyki oraz metod projektowania układów wykorzystujących te urządzenia, - komputerowego wspomagania projektowania układów automatyki, w tym cyfrowego sterowania i pomiarów dynamicznych w czasie rzeczywistym. | 2,0 | |
3,0 | Student ma uporządkowaną wiedzę z zakresu: - elementów wykonawczych automatyki przemysłowej, zna ich ograniczenia wynikające z wymagań środowiskowych, a także zna stan aktualny i tendencje rozwojowe w tym zakresie, - programowalnych urządzeń automatyki oraz metod projektowania układów wykorzystujących te urządzenia, - komputerowego wspomagania projektowania układów automatyki, w tym cyfrowego sterowania i pomiarów dynamicznych w czasie rzeczywistym. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
AR_1A_C27.2_U01 Potrafi: - dobrać elementy wykonawcze cyfrowego systemu kontrolno-pomiarowego czasu rzeczywistego, - dobrać typowe metody pomiaru oraz odpowiednie czujniki i przetworniki do pomiaru zjawisk dynamicznych (w tym drgań), a także ocenić przydatność nowych rozwiązań z tego obszaru do realizacji zadań cyfrowego przetwarzania sygnałów i sterowania w czasie rzeczywistym, - wykorzystać dostępne narzędzia informatyczne do projektowania i symulacji systemów kontrolno-pomiarowych czasu rzeczywistego, - sformułować zadanie sterowania w czasie rzeczywistym, zaprojektować architekturę sprzętowo-programową układu sterowania oraz zoptymalizować jego działanie po uruchomieniu. | 2,0 | |
3,0 | Potrafi: - dobrać elementy wykonawcze cyfrowego systemu kontrolno-pomiarowego czasu rzeczywistego, - dobrać typowe metody pomiaru oraz odpowiednie czujniki i przetworniki do pomiaru zjawisk dynamicznych (w tym drgań), a także ocenić przydatność nowych rozwiązań z tego obszaru do realizacji zadań cyfrowego przetwarzania sygnałów i sterowania w czasie rzeczywistym, - wykorzystać dostępne narzędzia informatyczne do projektowania i symulacji systemów kontrolno-pomiarowych czasu rzeczywistego, - sformułować zadanie sterowania w czasie rzeczywistym, zaprojektować architekturę sprzętowo-programową układu sterowania oraz zoptymalizować jego działanie po uruchomieniu. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
AR_1A_C27.2_K01 Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole projektowym, jak również ponoszenia odpowiedzialności za wspólne i indywidualnie realizowane zadania. | 2,0 | |
3,0 | Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole projektowym, jak również ponoszenia odpowiedzialności za wspólne i indywidualnie realizowane zadania. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Pietrusewicz K., Dworak P., Programowalne sterowniki automatyki PAC, NAKOM, Poznań, 2009, 1
- Tłaczała W., Środowisko LabVIEW w eksperymencie wspomaganym komputerowo, WNT, Warszawa, 2002
Literatura dodatkowa
- National Instruments, Strony internetowe producentów systemów automatyki, 2013