Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Automatyka i robotyka (S2)
specjalność: Bezpieczeństwo funkcjonalne systemów przemysłowych

Sylabus przedmiotu Systemy sensoryczne w robotyce:

Informacje podstawowe

Kierunek studiów Automatyka i robotyka
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Systemy sensoryczne w robotyce
Specjalność Sterowanie w układach robotycznych
Jednostka prowadząca Katedra Automatyki Przemysłowej i Robotyki
Nauczyciel odpowiedzialny Rafał Osypiuk <Rafal.Osypiuk@zut.edu.pl>
Inni nauczyciele Rafał Osypiuk <Rafal.Osypiuk@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 15 1,00,62egzamin
laboratoriaL2 15 1,00,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza z metrologii przemysłowej.
W-2Znajomość podstaw robotyki w zakresie budowy systemów sterowania.
W-3Podstawy informatyki i programowania obiektowego.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z czujnikami oraz systemami sensorycznymi stosowanymi w robotyce przemysłowej i mobilnej.
C-2Wykształcenie u studentów umiejętności integracji złożonych czujników z układami sterowania robotów.
C-3Zapoznanie studentów z metodami obróbki obrazu stosowanych w robotyce.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie do laboratorium systemów sensorycznych w robotyce. Omówienie narzędzi niezbędnych do przeprowadzenia ćwiczeń.2
T-L-2Programowa obsługa komunikacji z wybranym systemem sensorycznym (cz. I).2
T-L-3Programowa obsługa komunikacji z wybranym systemem sensorycznym (cz. II).2
T-L-4Uruchomienie kamery przemysłowej za pomocą własnej aplikacji (cz. I).2
T-L-5Uruchomienie kamery przemysłowej za pomocą własnej aplikacji (cz. II).2
T-L-6Implementacja prostych metod obróbki obrazu do identyfikacji położenia obiektów (cz. I).2
T-L-7Implementacja prostych metod obróbki obrazu do identyfikacji położenia obiektów (cz. II).2
T-L-8Zaliczenie formy zajęć.1
15
wykłady
T-W-1Wprowadzenie do zagadnień interakcji robota z otoczeniem. Ogólny przegląd czujników i systemów sensorycznych stosowanych w robotyce.1
T-W-2Bezdotykowe i dotykowe czujniki przemieszczenia liniowego i kątowego.4
T-W-3Czujniki do podniesienia bezpieczeństwa w systemach zrobotyzowanych.1
T-W-4Czujniki sił i momentów. Zmysł dotyku w robotyce i problemy jego realizacji praktycznej.1
T-W-5Technologia i zastosowanie czujników MEMS.1
T-W-6Czujniki do pozycjonowania robotów mobilnych.2
T-W-7Sprzężenie wizyjne. Aktualne systemy komercyjne oraz sposoby tworzenia rozwiązań własnych.3
T-W-8Metody integracji czujników z architekturą sterowania robota.1
T-W-9Zagadnienie wzorcowania przyrządów pomiarowych.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach15
A-L-2Sporządzenie sprawozdań10
A-L-3Przygotowanie do zaliczenia zajęć laboratoryjnych5
30
wykłady
A-W-1Uczestnictwo w zajęciach15
A-W-2Studiowanie literatury10
A-W-3Przygotowanie do egzaminu5
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2Wykład problemowy.
M-3Ćwiczenia realizowane za pomocą środowiska programistycznego oraz rzeczywistych systemów sensorycznych.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Ocena wystawiana na zakończenie wykładów na podstawie pracy pisemnej i rozmowy ze studentem.
S-2Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu ćwiczeń laboratoryjnych.
S-3Ocena podsumowująca: Ocena wystawiana po zakończeniu ćwiczeń laboratoryjnych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta w realizację wszystkich ćwiczeń laboratoryjnych.
S-4Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu zajęć projektowych.
S-5Ocena podsumowująca: Ocena wystawiana po zakończeniu zajęć projektowych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_2A_C23_W01
Student zna zasadę działania prostych czujników oraz sposoby ich integracji z robotem przemysłowym lub mobilnym.
AR_2A_W06, AR_2A_W08C-1, C-3T-W-2, T-W-8, T-W-1, T-W-7, T-W-6, T-W-4, T-W-3, T-W-5, T-W-9M-3, M-4, M-1, M-2S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_2A_C23_U01
Student potrafi zintegrować prosty czujnik z własną aplikacją, napisaną w dowolnym języku programowania.
AR_2A_U10, AR_2A_U13C-2T-L-8, T-L-1, T-L-6, T-L-7, T-L-2, T-L-3, T-L-4, T-L-5M-3, M-4S-4, S-2, S-3, S-5

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
AR_2A_C23_W01
Student zna zasadę działania prostych czujników oraz sposoby ich integracji z robotem przemysłowym lub mobilnym.
2,0
3,0Student zna zasadę działania prostych czujników oraz sposoby ich integracji z robotem przemysłowym lub mobilnym.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
AR_2A_C23_U01
Student potrafi zintegrować prosty czujnik z własną aplikacją, napisaną w dowolnym języku programowania.
2,0
3,0Student potrafi zintegrować prosty czujnik z własną aplikacją, napisaną w dowolnym języku programowania.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Bradski G., Kaehler A., Learning OpenCV: Computer Vision with the OpenCV Library, O'Reilly Media, 2008, 1st Edition
  2. Gan Z., Tang Q., Visual Sensing and its Applications: Integration of Laser Sensors to Industrial Robots, Springer, 2011, 1st Edition
  3. Castellanos J. A., Tardós J. D., Mobile Robot Localization and Map Building - A Multisensor Fusion Approach, Springer, 2000, 1st Edition
  4. Bose P., Modern Inertial Sensors and Systems, Prentice-Hall, 2008

Literatura dodatkowa

  1. Microsoft, Windows Driver Model (WDM), MSDN, Internet, 2012
  2. SICK, SICK – Safety laser scanners, Internet, 2011

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie do laboratorium systemów sensorycznych w robotyce. Omówienie narzędzi niezbędnych do przeprowadzenia ćwiczeń.2
T-L-2Programowa obsługa komunikacji z wybranym systemem sensorycznym (cz. I).2
T-L-3Programowa obsługa komunikacji z wybranym systemem sensorycznym (cz. II).2
T-L-4Uruchomienie kamery przemysłowej za pomocą własnej aplikacji (cz. I).2
T-L-5Uruchomienie kamery przemysłowej za pomocą własnej aplikacji (cz. II).2
T-L-6Implementacja prostych metod obróbki obrazu do identyfikacji położenia obiektów (cz. I).2
T-L-7Implementacja prostych metod obróbki obrazu do identyfikacji położenia obiektów (cz. II).2
T-L-8Zaliczenie formy zajęć.1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do zagadnień interakcji robota z otoczeniem. Ogólny przegląd czujników i systemów sensorycznych stosowanych w robotyce.1
T-W-2Bezdotykowe i dotykowe czujniki przemieszczenia liniowego i kątowego.4
T-W-3Czujniki do podniesienia bezpieczeństwa w systemach zrobotyzowanych.1
T-W-4Czujniki sił i momentów. Zmysł dotyku w robotyce i problemy jego realizacji praktycznej.1
T-W-5Technologia i zastosowanie czujników MEMS.1
T-W-6Czujniki do pozycjonowania robotów mobilnych.2
T-W-7Sprzężenie wizyjne. Aktualne systemy komercyjne oraz sposoby tworzenia rozwiązań własnych.3
T-W-8Metody integracji czujników z architekturą sterowania robota.1
T-W-9Zagadnienie wzorcowania przyrządów pomiarowych.1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach15
A-L-2Sporządzenie sprawozdań10
A-L-3Przygotowanie do zaliczenia zajęć laboratoryjnych5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach15
A-W-2Studiowanie literatury10
A-W-3Przygotowanie do egzaminu5
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaAR_2A_C23_W01Student zna zasadę działania prostych czujników oraz sposoby ich integracji z robotem przemysłowym lub mobilnym.
Odniesienie do efektów kształcenia dla kierunku studiówAR_2A_W06Ma ugruntowaną wiedzę o konstrukcji oraz metodach analizy właściwości manipulatorów i robotów mobilnych, zna zaawansowane układy i algorytmy sterowania nimi, zna najnowsze osiągnięcia robotyki.
AR_2A_W08Zna zaawansowane przyrządy i systemy pomiarowe, w tym systemy wizyjne.
Cel przedmiotuC-1Zapoznanie studentów z czujnikami oraz systemami sensorycznymi stosowanymi w robotyce przemysłowej i mobilnej.
C-3Zapoznanie studentów z metodami obróbki obrazu stosowanych w robotyce.
Treści programoweT-W-2Bezdotykowe i dotykowe czujniki przemieszczenia liniowego i kątowego.
T-W-8Metody integracji czujników z architekturą sterowania robota.
T-W-1Wprowadzenie do zagadnień interakcji robota z otoczeniem. Ogólny przegląd czujników i systemów sensorycznych stosowanych w robotyce.
T-W-7Sprzężenie wizyjne. Aktualne systemy komercyjne oraz sposoby tworzenia rozwiązań własnych.
T-W-6Czujniki do pozycjonowania robotów mobilnych.
T-W-4Czujniki sił i momentów. Zmysł dotyku w robotyce i problemy jego realizacji praktycznej.
T-W-3Czujniki do podniesienia bezpieczeństwa w systemach zrobotyzowanych.
T-W-5Technologia i zastosowanie czujników MEMS.
T-W-9Zagadnienie wzorcowania przyrządów pomiarowych.
Metody nauczaniaM-3Ćwiczenia realizowane za pomocą środowiska programistycznego oraz rzeczywistych systemów sensorycznych.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.
M-1Wykład informacyjny.
M-2Wykład problemowy.
Sposób ocenyS-1Ocena podsumowująca: Ocena wystawiana na zakończenie wykładów na podstawie pracy pisemnej i rozmowy ze studentem.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student zna zasadę działania prostych czujników oraz sposoby ich integracji z robotem przemysłowym lub mobilnym.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaAR_2A_C23_U01Student potrafi zintegrować prosty czujnik z własną aplikacją, napisaną w dowolnym języku programowania.
Odniesienie do efektów kształcenia dla kierunku studiówAR_2A_U10Potrafi zaprojektować złożony system robotyczny uwzględniając zaawansowaną interakcję robota z otoczeniem
AR_2A_U13Potrafi projektować zaawansowane systemy pomiarowe w tym systemy wizyjne stosowane w automatyce i robotyce.
Cel przedmiotuC-2Wykształcenie u studentów umiejętności integracji złożonych czujników z układami sterowania robotów.
Treści programoweT-L-8Zaliczenie formy zajęć.
T-L-1Wprowadzenie do laboratorium systemów sensorycznych w robotyce. Omówienie narzędzi niezbędnych do przeprowadzenia ćwiczeń.
T-L-6Implementacja prostych metod obróbki obrazu do identyfikacji położenia obiektów (cz. I).
T-L-7Implementacja prostych metod obróbki obrazu do identyfikacji położenia obiektów (cz. II).
T-L-2Programowa obsługa komunikacji z wybranym systemem sensorycznym (cz. I).
T-L-3Programowa obsługa komunikacji z wybranym systemem sensorycznym (cz. II).
T-L-4Uruchomienie kamery przemysłowej za pomocą własnej aplikacji (cz. I).
T-L-5Uruchomienie kamery przemysłowej za pomocą własnej aplikacji (cz. II).
Metody nauczaniaM-3Ćwiczenia realizowane za pomocą środowiska programistycznego oraz rzeczywistych systemów sensorycznych.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.
Sposób ocenyS-4Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu zajęć projektowych.
S-2Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu ćwiczeń laboratoryjnych.
S-3Ocena podsumowująca: Ocena wystawiana po zakończeniu ćwiczeń laboratoryjnych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta w realizację wszystkich ćwiczeń laboratoryjnych.
S-5Ocena podsumowująca: Ocena wystawiana po zakończeniu zajęć projektowych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi zintegrować prosty czujnik z własną aplikacją, napisaną w dowolnym języku programowania.
3,5
4,0
4,5
5,0