Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N1)
specjalność: systemy komputerowe i oprogramowanie

Sylabus przedmiotu Komputerowe systemy wspomagania decyzji:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Komputerowe systemy wspomagania decyzji
Specjalność systemy komputerowe i oprogramowanie
Jednostka prowadząca Katedra Inżynierii Systemów Informacyjnych
Nauczyciel odpowiedzialny Piotr Buczyński <Piotr.Buczynski@zut.edu.pl>
Inni nauczyciele Piotr Buczyński <Piotr.Buczynski@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny 8 Grupa obieralna 6

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW7 10 1,00,62egzamin
laboratoriaL7 10 2,00,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość algebry i analizy matematycznej
W-2Podstawy Informatyki
W-3Zasady budowy i działania systemów informacyjnych
W-4Umiejętność posługiwania się programem arkuszy kalkulacyjnych (np. Microsoft Excel).

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie się z podstawowymi pojęciami związanymi ze wspomaganiem decyzji zarządczych.
C-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
C-3Poznanie struktur i zasad funkcjonowania typowych systemów wspomagania decyzji.
C-4Pogłębienie znajomości oprogramowania użytkowego – Microsoft EXCEL.
C-5Opanowanie technik obliczeniowych we wspomaganiu decyzji w zarządzaniu finansami przedsiębiorstwa.
C-6Umiejętność wykorzystania arkuszy kalkulacyjnych we wspomaganiu decyzji inwestycyjnych.
C-7Poznanie podstawowych pojęć związanych z modelami optymalizacyjnymi.
C-8Nauczenie się rozwiązywania problemów optymalizacyjnych w środowisku Microsoft-EXCEL.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Metody analizy przyczynowo-skutkowej – przebieg obliczeń w arkuszu kalkulacyjnym. Przypadek dwuczynnikowy i przypadek trzyczynnikowy (zastosowanie wzorów metod poznanych z materiałów uzupełniających - udostępnionych studentom drogą elektroniczną). Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.2
T-L-2Wartość pieniądza w czasie. Porównanie – na przykładach - reguł: procentu prostego i procentu składanego. Przyszła i obecna wartość pieniądza – formuły dla stałej i zmiennej stopy procentowej. Wykorzystanie odpowiednich funkcji EXCEL-a. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.2
T-L-3Wartość pieniądza w czasie. Porównanie – na przykładach – płatności annuitetowych według wersji: bez wyprzedzenia i z wyprzedzeniem. Zastosowanie funkcji EXCEL-owych. Zastosowanie formuł tablicowych. Przykłady naliczania odsetek karnych. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.2
T-L-4Przykłady numeryczne na obliczanie realnej stopy procentowej. Zastosowanie algorytmów budowy harmonogramów spłaty kredytów – cztery warianty: metoda rat kapitałowych a metoda annuitetowa; wariant bez wyprzedzenia a wariant z wyprzedzeniem. Formuły tablicowe przy zmiennej stopie odsetkowej. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
T-L-5Obliczanie NPV projektów inwestycyjnych: „krok po kroku” i z wykorzystaniem funkcji EXCEL-owych. Przykład zastosowania metody okresu zwrotu. Metoda IRR: wykorzystanie metody przybliżonej (interpolacja liniowa), opcja Narzędzia|Szukaj wyniku… oraz funkcja EXCEL-a. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
T-L-6Dodatek SOLVER. Prezentacja części modelu optymalizacyjnego wymaganych przez dodatek. Prezentacja opcji sterujących iteracyjnym procesem obliczeń. Konstruowanie modelu optymalizacyjnego z wykorzystaniem funkcji i formuł tablicowych. Zapamiętywanie i wczytywanie modelu. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
T-L-7Dodatek SOLVER. Zapis macierzowy zagadnienia programowania liniowego (PL). Interpretacja wyników obliczeń – na przykładach. Identyfikacja rozwiązania optymalnego i rozpoznanie sprzecznego zagadnienia PL, program dualny, obliczanie krańcowej produktywności i krańcowej kosztochłonności, poszukiwanie alternatywnych rozwiązań optymalnych. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
10
wykłady
T-W-1Podstawowe pojęcia: decyzja, sytuacja decyzyjna, modele sytuacji decyzyjnych, zarządzanie, system, system informacyjny, system informacyjny przedsiębiorstwa, system informatyczny.1
T-W-2Klasyfikacja informacji. Funkcje informacji. Właściwości informacji jako zasobu. Szczeble zarządzania a rodzaje informacji. Cechy informacji.1
T-W-3Informatyczne systemy departamentowe. Informatyczne systemy przedsiębiorstwa. Systemy międzyorganizacyjne. Systemy finansowe. Systemy produkcyjne. Systemy zarządzania zasobami ludzkimi.1
T-W-4Systemy informatyczne a szczeble zarządzania. Nazewnictwo systemów: angielskie i polskie. Charakterystyka systemów informatycznych według szczebli zarządzania.1
T-W-5Systemu poziomu operacyjnego – STPD: definicje, istota, cele, główne cechy. Podstawowe transakcje w przedsiębiorstwie produkcyjnym. Organizacja przetwarzania danych w STPD.1
T-W-6Systemy wspomagania decyzji menedżęrskich szczebla taktycznego – ISZ. Model ISZ. Wejścia i wyjścia ISZ. Przykłady wspomagania decyzji zrutynizowanych.1
T-W-7Systemy wspomagania decyzji menedżerskich szczebla strategicznego – SIK/SWK: definicje, istota, cele. Model SIK/SWK. Krytyczne czynniki sukcesu a kluczowe wskaźniki działalności. Możliwości i zalety SIK.2
T-W-8Systemy wspomagające pracowników wiedzy – SWD. Procesy i fazy podejmowania decyzji. Planowanie strategiczne, kontrola menedżerska i kontrola operacyjna – wspomaganie komputerowe. Struktura SWD. Zarządzanie danymi, zarządzanie modelem, zarządzanie wiedzą, interfejs użytkownika. Analiza wrażliwości i symulacja.1
T-W-9Systemy wspomagania decyzji oparte na sztucznej inteligencji. Systemy eksperckie (SE) – definicje, istota, struktura i funkcjonowanie typowego SE. Zastosowania SE w biznesie. Zalety i ograniczenia SE. Ogólne informacje na temat sztucznych sieci neuronowych (SSN).1
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach10
A-L-2Przygotowanie do laboratoriów (praca własna studenta) 7 x 2 godz. = 14 godz.14
A-L-3Rozwiązanie zadań zaliczających laboratoria (praca w parach - prace własne studentów) 40 godz.35
A-L-4Udział w konsultacjach do laboratoriów 2 godz.2
61
wykłady
A-W-1uczestnictwo w zajęciach10
A-W-2Przygotowanie do egzaminu (10 godz.) i obecność na egzaminie (2 godz.) 12 godz.18
A-W-3Udział w konsultacjach do wykładu 2 godz.2
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z prezentacją elektroniczną.
M-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
M-3Z użyciem komputera - rozwiązywanie (w grupach 2, 3 osobowych) zestawów zadań przesłanych studentom z conajmniej tygodniowym wyprzedzeniem.
M-4Objaśnienie (na ostatnich zajęciach laboratoryjnych): zestaw zadań zaliczających laboratoria, kryteria oceniania, określenie wymagań formalnych i merytorycznych.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Na początku laboratorium - krótkie zaliczenie zadania postawionego na poprzednich zajęciach.
S-2Ocena podsumowująca: Ocena rozwiązania zestawu zadań zaliczających laboratoria (rozwiązania przesłane drogą elektroniczną).
S-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_O6/09_W01
Student powinien być w stanie definiować podstawowe pojęcia związane ze wspomaganiem decyzji zarządczych.
I_1A_W20C-1, C-2, C-8, C-6, C-5, C-7, C-4, C-3T-W-5, T-W-8, T-W-1, T-W-7, T-W-2, T-W-6, T-W-3, T-W-9, T-W-4, T-L-1M-2, M-1S-3
I_1A_O6/09_W02
Student powinien być w stanie wymienić i definiować klasy systemów wspomagania decyzji oraz rozpoznawać i rozróżniać klasy tych na podstawie zadanych charakterystyk.
C-1, C-8, C-5, C-7, C-3T-W-5, T-W-8, T-W-1, T-W-7, T-W-2, T-W-6, T-W-3, T-W-9, T-W-4, T-L-1M-2, M-1S-3
I_1A_O6/09_W03
Student powinien być w stanie wymienić i opisać elementy modeli optymalizacyjnych wspomagających podejmowanie decyzji
C-8T-W-9M-2, M-1S-3

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_O6/09_U01
Student powinien umieć zaprojektować model sytuacji decyzyjnej, przygotować stosowny zbiór formuł, posłużyć się arkuszem kalkulacyjnym, zweryfikować i zinterpretować uzyskane wyniki.
I_1A_U17, I_1A_U12, I_1A_U15, I_1A_U16C-2M-2, M-3S-2, S-1
I_1A_O6/09_U02
Student powinien umieć dobrać i wykorzystać odpowiednie narzędzia i funkcje arkusza kalkulacyjnego do obliczeń wspomagających decyzje inwestycyjne i kapitałowe.
C-2, C-8, C-6M-1, M-3, M-4S-2, S-3, S-1
I_1A_O6/09_U03
Student powinien umieć opracować i sporządzić w arkuszu kalkulacyjnym model optymalizacyjny problemu decyzyjnego, rozwiązać taki model, wyszukać, ocenić i zinterpretować możliwe alternatywy decyzji.
C-2M-2S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_O6/09_K01
Dbałość o zwięzły i precyzyjny opis wyników obliczeń.
C-2M-2S-3
I_1A_O6/09_K02
Aktywna postawa i chęć pracy w zespole.
C-2M-2S-3
I_1A_O6/09_K03
Kreatywność i zdolność do współpracy podczas tworzenia i prezentacji tematu zadanego studentom w ramach samodzielnego opracowania.
C-2M-2S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_1A_O6/09_W01
Student powinien być w stanie definiować podstawowe pojęcia związane ze wspomaganiem decyzji zarządczych.
2,0
3,0Student zna definicje podstawowych pojęć
3,5
4,0
4,5
5,0
I_1A_O6/09_W02
Student powinien być w stanie wymienić i definiować klasy systemów wspomagania decyzji oraz rozpoznawać i rozróżniać klasy tych na podstawie zadanych charakterystyk.
2,0
3,0student zna i umie wymienić oraz zdefiniować klasy systemów wspomagania decyzji a także umie rozpoznawać i rozróżniać klasy tych na podstawie zadanych charakterystyk.
3,5
4,0
4,5
5,0
I_1A_O6/09_W03
Student powinien być w stanie wymienić i opisać elementy modeli optymalizacyjnych wspomagających podejmowanie decyzji
2,0
3,0umie wymienić i opisać elementy modeli optymalizacyjnych wspomagających podejmowanie decyzji
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_1A_O6/09_U01
Student powinien umieć zaprojektować model sytuacji decyzyjnej, przygotować stosowny zbiór formuł, posłużyć się arkuszem kalkulacyjnym, zweryfikować i zinterpretować uzyskane wyniki.
2,0
3,0Student umieć zaprojektować podstawowy model sytuacji decyzyjnej, przygotować stosowny zbiór formuł, posłużyć się arkuszem kalkulacyjnym, zweryfikować i zinterpretować uzyskane wyniki.
3,5
4,0
4,5
5,0
I_1A_O6/09_U02
Student powinien umieć dobrać i wykorzystać odpowiednie narzędzia i funkcje arkusza kalkulacyjnego do obliczeń wspomagających decyzje inwestycyjne i kapitałowe.
2,0
3,0Student umie dobrać i wykorzystać odpowiednie narzędzia i funkcje arkusza kalkulacyjnego do obliczeń wspomagających decyzje inwestycyjne i kapitałowe.
3,5
4,0
4,5
5,0
I_1A_O6/09_U03
Student powinien umieć opracować i sporządzić w arkuszu kalkulacyjnym model optymalizacyjny problemu decyzyjnego, rozwiązać taki model, wyszukać, ocenić i zinterpretować możliwe alternatywy decyzji.
2,0
3,0Student umie opracować i sporządzić w arkuszu kalkulacyjnym model optymalizacyjny problemu decyzyjnego, rozwiązać taki model, wyszukać, ocenić i zinterpretować możliwe alternatywy decyzji.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
I_1A_O6/09_K01
Dbałość o zwięzły i precyzyjny opis wyników obliczeń.
2,0
3,0Dbałość o zwięzły i precyzyjny opis wyników obliczeń.
3,5
4,0
4,5
5,0
I_1A_O6/09_K02
Aktywna postawa i chęć pracy w zespole.
2,0
3,0Aktywna postawa i chęć pracy w zespole.
3,5
4,0
4,5
5,0
I_1A_O6/09_K03
Kreatywność i zdolność do współpracy podczas tworzenia i prezentacji tematu zadanego studentom w ramach samodzielnego opracowania.
2,0
3,0Kreatywność i zdolność do współpracy podczas tworzenia i prezentacji tematu zadanego studentom w ramach samodzielnego opracowania.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. R. Budziński, Komputerowy system przetwarzania danych ekonomiczno-finansowych w przedsiębiorstwie, IBS PAN, Warszawa-Szczecin, 2000
  2. R. Knosala [red.], Komputerowe wspomaganie zarządzania przedsiębiorstwem. Nowe metody i systemy, PWE, Warszawa, 2007
  3. W. T. Bielecki, Informatyzacja zarządzania, PWE, Warszawa, 2001
  4. K. Piasecki, Modele matematyki finansowej, Wydawnictwo Naukowe PWN, Warszawa, 2007

Literatura dodatkowa

  1. R. McLeod Jr., G. Schell, Management Information Systems, Prentice Hall Inc., New Jersey, 2001, Eight Edition

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Metody analizy przyczynowo-skutkowej – przebieg obliczeń w arkuszu kalkulacyjnym. Przypadek dwuczynnikowy i przypadek trzyczynnikowy (zastosowanie wzorów metod poznanych z materiałów uzupełniających - udostępnionych studentom drogą elektroniczną). Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.2
T-L-2Wartość pieniądza w czasie. Porównanie – na przykładach - reguł: procentu prostego i procentu składanego. Przyszła i obecna wartość pieniądza – formuły dla stałej i zmiennej stopy procentowej. Wykorzystanie odpowiednich funkcji EXCEL-a. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.2
T-L-3Wartość pieniądza w czasie. Porównanie – na przykładach – płatności annuitetowych według wersji: bez wyprzedzenia i z wyprzedzeniem. Zastosowanie funkcji EXCEL-owych. Zastosowanie formuł tablicowych. Przykłady naliczania odsetek karnych. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.2
T-L-4Przykłady numeryczne na obliczanie realnej stopy procentowej. Zastosowanie algorytmów budowy harmonogramów spłaty kredytów – cztery warianty: metoda rat kapitałowych a metoda annuitetowa; wariant bez wyprzedzenia a wariant z wyprzedzeniem. Formuły tablicowe przy zmiennej stopie odsetkowej. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
T-L-5Obliczanie NPV projektów inwestycyjnych: „krok po kroku” i z wykorzystaniem funkcji EXCEL-owych. Przykład zastosowania metody okresu zwrotu. Metoda IRR: wykorzystanie metody przybliżonej (interpolacja liniowa), opcja Narzędzia|Szukaj wyniku… oraz funkcja EXCEL-a. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
T-L-6Dodatek SOLVER. Prezentacja części modelu optymalizacyjnego wymaganych przez dodatek. Prezentacja opcji sterujących iteracyjnym procesem obliczeń. Konstruowanie modelu optymalizacyjnego z wykorzystaniem funkcji i formuł tablicowych. Zapamiętywanie i wczytywanie modelu. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
T-L-7Dodatek SOLVER. Zapis macierzowy zagadnienia programowania liniowego (PL). Interpretacja wyników obliczeń – na przykładach. Identyfikacja rozwiązania optymalnego i rozpoznanie sprzecznego zagadnienia PL, program dualny, obliczanie krańcowej produktywności i krańcowej kosztochłonności, poszukiwanie alternatywnych rozwiązań optymalnych. Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.1
10

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia: decyzja, sytuacja decyzyjna, modele sytuacji decyzyjnych, zarządzanie, system, system informacyjny, system informacyjny przedsiębiorstwa, system informatyczny.1
T-W-2Klasyfikacja informacji. Funkcje informacji. Właściwości informacji jako zasobu. Szczeble zarządzania a rodzaje informacji. Cechy informacji.1
T-W-3Informatyczne systemy departamentowe. Informatyczne systemy przedsiębiorstwa. Systemy międzyorganizacyjne. Systemy finansowe. Systemy produkcyjne. Systemy zarządzania zasobami ludzkimi.1
T-W-4Systemy informatyczne a szczeble zarządzania. Nazewnictwo systemów: angielskie i polskie. Charakterystyka systemów informatycznych według szczebli zarządzania.1
T-W-5Systemu poziomu operacyjnego – STPD: definicje, istota, cele, główne cechy. Podstawowe transakcje w przedsiębiorstwie produkcyjnym. Organizacja przetwarzania danych w STPD.1
T-W-6Systemy wspomagania decyzji menedżęrskich szczebla taktycznego – ISZ. Model ISZ. Wejścia i wyjścia ISZ. Przykłady wspomagania decyzji zrutynizowanych.1
T-W-7Systemy wspomagania decyzji menedżerskich szczebla strategicznego – SIK/SWK: definicje, istota, cele. Model SIK/SWK. Krytyczne czynniki sukcesu a kluczowe wskaźniki działalności. Możliwości i zalety SIK.2
T-W-8Systemy wspomagające pracowników wiedzy – SWD. Procesy i fazy podejmowania decyzji. Planowanie strategiczne, kontrola menedżerska i kontrola operacyjna – wspomaganie komputerowe. Struktura SWD. Zarządzanie danymi, zarządzanie modelem, zarządzanie wiedzą, interfejs użytkownika. Analiza wrażliwości i symulacja.1
T-W-9Systemy wspomagania decyzji oparte na sztucznej inteligencji. Systemy eksperckie (SE) – definicje, istota, struktura i funkcjonowanie typowego SE. Zastosowania SE w biznesie. Zalety i ograniczenia SE. Ogólne informacje na temat sztucznych sieci neuronowych (SSN).1
10

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach10
A-L-2Przygotowanie do laboratoriów (praca własna studenta) 7 x 2 godz. = 14 godz.14
A-L-3Rozwiązanie zadań zaliczających laboratoria (praca w parach - prace własne studentów) 40 godz.35
A-L-4Udział w konsultacjach do laboratoriów 2 godz.2
61
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach10
A-W-2Przygotowanie do egzaminu (10 godz.) i obecność na egzaminie (2 godz.) 12 godz.18
A-W-3Udział w konsultacjach do wykładu 2 godz.2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_W01Student powinien być w stanie definiować podstawowe pojęcia związane ze wspomaganiem decyzji zarządczych.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W20zna wybrane metody i techniki dotyczące podstaw podejmowania decyzji
Cel przedmiotuC-1Zapoznanie się z podstawowymi pojęciami związanymi ze wspomaganiem decyzji zarządczych.
C-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
C-8Nauczenie się rozwiązywania problemów optymalizacyjnych w środowisku Microsoft-EXCEL.
C-6Umiejętność wykorzystania arkuszy kalkulacyjnych we wspomaganiu decyzji inwestycyjnych.
C-5Opanowanie technik obliczeniowych we wspomaganiu decyzji w zarządzaniu finansami przedsiębiorstwa.
C-7Poznanie podstawowych pojęć związanych z modelami optymalizacyjnymi.
C-4Pogłębienie znajomości oprogramowania użytkowego – Microsoft EXCEL.
C-3Poznanie struktur i zasad funkcjonowania typowych systemów wspomagania decyzji.
Treści programoweT-W-5Systemu poziomu operacyjnego – STPD: definicje, istota, cele, główne cechy. Podstawowe transakcje w przedsiębiorstwie produkcyjnym. Organizacja przetwarzania danych w STPD.
T-W-8Systemy wspomagające pracowników wiedzy – SWD. Procesy i fazy podejmowania decyzji. Planowanie strategiczne, kontrola menedżerska i kontrola operacyjna – wspomaganie komputerowe. Struktura SWD. Zarządzanie danymi, zarządzanie modelem, zarządzanie wiedzą, interfejs użytkownika. Analiza wrażliwości i symulacja.
T-W-1Podstawowe pojęcia: decyzja, sytuacja decyzyjna, modele sytuacji decyzyjnych, zarządzanie, system, system informacyjny, system informacyjny przedsiębiorstwa, system informatyczny.
T-W-7Systemy wspomagania decyzji menedżerskich szczebla strategicznego – SIK/SWK: definicje, istota, cele. Model SIK/SWK. Krytyczne czynniki sukcesu a kluczowe wskaźniki działalności. Możliwości i zalety SIK.
T-W-2Klasyfikacja informacji. Funkcje informacji. Właściwości informacji jako zasobu. Szczeble zarządzania a rodzaje informacji. Cechy informacji.
T-W-6Systemy wspomagania decyzji menedżęrskich szczebla taktycznego – ISZ. Model ISZ. Wejścia i wyjścia ISZ. Przykłady wspomagania decyzji zrutynizowanych.
T-W-3Informatyczne systemy departamentowe. Informatyczne systemy przedsiębiorstwa. Systemy międzyorganizacyjne. Systemy finansowe. Systemy produkcyjne. Systemy zarządzania zasobami ludzkimi.
T-W-9Systemy wspomagania decyzji oparte na sztucznej inteligencji. Systemy eksperckie (SE) – definicje, istota, struktura i funkcjonowanie typowego SE. Zastosowania SE w biznesie. Zalety i ograniczenia SE. Ogólne informacje na temat sztucznych sieci neuronowych (SSN).
T-W-4Systemy informatyczne a szczeble zarządzania. Nazewnictwo systemów: angielskie i polskie. Charakterystyka systemów informatycznych według szczebli zarządzania.
T-L-1Metody analizy przyczynowo-skutkowej – przebieg obliczeń w arkuszu kalkulacyjnym. Przypadek dwuczynnikowy i przypadek trzyczynnikowy (zastosowanie wzorów metod poznanych z materiałów uzupełniających - udostępnionych studentom drogą elektroniczną). Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
M-1Wykład informacyjny z prezentacją elektroniczną.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student zna definicje podstawowych pojęć
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_W02Student powinien być w stanie wymienić i definiować klasy systemów wspomagania decyzji oraz rozpoznawać i rozróżniać klasy tych na podstawie zadanych charakterystyk.
Cel przedmiotuC-1Zapoznanie się z podstawowymi pojęciami związanymi ze wspomaganiem decyzji zarządczych.
C-8Nauczenie się rozwiązywania problemów optymalizacyjnych w środowisku Microsoft-EXCEL.
C-5Opanowanie technik obliczeniowych we wspomaganiu decyzji w zarządzaniu finansami przedsiębiorstwa.
C-7Poznanie podstawowych pojęć związanych z modelami optymalizacyjnymi.
C-3Poznanie struktur i zasad funkcjonowania typowych systemów wspomagania decyzji.
Treści programoweT-W-5Systemu poziomu operacyjnego – STPD: definicje, istota, cele, główne cechy. Podstawowe transakcje w przedsiębiorstwie produkcyjnym. Organizacja przetwarzania danych w STPD.
T-W-8Systemy wspomagające pracowników wiedzy – SWD. Procesy i fazy podejmowania decyzji. Planowanie strategiczne, kontrola menedżerska i kontrola operacyjna – wspomaganie komputerowe. Struktura SWD. Zarządzanie danymi, zarządzanie modelem, zarządzanie wiedzą, interfejs użytkownika. Analiza wrażliwości i symulacja.
T-W-1Podstawowe pojęcia: decyzja, sytuacja decyzyjna, modele sytuacji decyzyjnych, zarządzanie, system, system informacyjny, system informacyjny przedsiębiorstwa, system informatyczny.
T-W-7Systemy wspomagania decyzji menedżerskich szczebla strategicznego – SIK/SWK: definicje, istota, cele. Model SIK/SWK. Krytyczne czynniki sukcesu a kluczowe wskaźniki działalności. Możliwości i zalety SIK.
T-W-2Klasyfikacja informacji. Funkcje informacji. Właściwości informacji jako zasobu. Szczeble zarządzania a rodzaje informacji. Cechy informacji.
T-W-6Systemy wspomagania decyzji menedżęrskich szczebla taktycznego – ISZ. Model ISZ. Wejścia i wyjścia ISZ. Przykłady wspomagania decyzji zrutynizowanych.
T-W-3Informatyczne systemy departamentowe. Informatyczne systemy przedsiębiorstwa. Systemy międzyorganizacyjne. Systemy finansowe. Systemy produkcyjne. Systemy zarządzania zasobami ludzkimi.
T-W-9Systemy wspomagania decyzji oparte na sztucznej inteligencji. Systemy eksperckie (SE) – definicje, istota, struktura i funkcjonowanie typowego SE. Zastosowania SE w biznesie. Zalety i ograniczenia SE. Ogólne informacje na temat sztucznych sieci neuronowych (SSN).
T-W-4Systemy informatyczne a szczeble zarządzania. Nazewnictwo systemów: angielskie i polskie. Charakterystyka systemów informatycznych według szczebli zarządzania.
T-L-1Metody analizy przyczynowo-skutkowej – przebieg obliczeń w arkuszu kalkulacyjnym. Przypadek dwuczynnikowy i przypadek trzyczynnikowy (zastosowanie wzorów metod poznanych z materiałów uzupełniających - udostępnionych studentom drogą elektroniczną). Przekazanie i omówienie zadania do samodzielnego rozwiązania przez studentów - na następne zajęcia laboratoryjne.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
M-1Wykład informacyjny z prezentacją elektroniczną.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0student zna i umie wymienić oraz zdefiniować klasy systemów wspomagania decyzji a także umie rozpoznawać i rozróżniać klasy tych na podstawie zadanych charakterystyk.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_W03Student powinien być w stanie wymienić i opisać elementy modeli optymalizacyjnych wspomagających podejmowanie decyzji
Cel przedmiotuC-8Nauczenie się rozwiązywania problemów optymalizacyjnych w środowisku Microsoft-EXCEL.
Treści programoweT-W-9Systemy wspomagania decyzji oparte na sztucznej inteligencji. Systemy eksperckie (SE) – definicje, istota, struktura i funkcjonowanie typowego SE. Zastosowania SE w biznesie. Zalety i ograniczenia SE. Ogólne informacje na temat sztucznych sieci neuronowych (SSN).
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
M-1Wykład informacyjny z prezentacją elektroniczną.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0umie wymienić i opisać elementy modeli optymalizacyjnych wspomagających podejmowanie decyzji
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_U01Student powinien umieć zaprojektować model sytuacji decyzyjnej, przygotować stosowny zbiór formuł, posłużyć się arkuszem kalkulacyjnym, zweryfikować i zinterpretować uzyskane wyniki.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U17potrafi ocenić przydatność rutynowych metod i narzędzi rozwiązania prostego zadania inżynierskiego, typowego dla reprezentowanej dyscypliny inżynierskiej oraz wybrać i zastosować właściwą metodę i narzędzia
I_1A_U12umie praktycznie zastosować technologie informatyczne w organizacjach, ze szczególnym uwzględnieniem biznesu
I_1A_U15potrafi wykorzystywać poznane metody, modele matematyczne oraz symulacje komputerowe do rozwiązywania prostych problemów inżynierskich
I_1A_U16ma umiejętność wykrywania związków i zależności w procesach zachodzących w systemach rzeczywistych i tworzenia modeli komputerowych
Cel przedmiotuC-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
M-3Z użyciem komputera - rozwiązywanie (w grupach 2, 3 osobowych) zestawów zadań przesłanych studentom z conajmniej tygodniowym wyprzedzeniem.
Sposób ocenyS-2Ocena podsumowująca: Ocena rozwiązania zestawu zadań zaliczających laboratoria (rozwiązania przesłane drogą elektroniczną).
S-1Ocena formująca: Na początku laboratorium - krótkie zaliczenie zadania postawionego na poprzednich zajęciach.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student umieć zaprojektować podstawowy model sytuacji decyzyjnej, przygotować stosowny zbiór formuł, posłużyć się arkuszem kalkulacyjnym, zweryfikować i zinterpretować uzyskane wyniki.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_U02Student powinien umieć dobrać i wykorzystać odpowiednie narzędzia i funkcje arkusza kalkulacyjnego do obliczeń wspomagających decyzje inwestycyjne i kapitałowe.
Cel przedmiotuC-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
C-8Nauczenie się rozwiązywania problemów optymalizacyjnych w środowisku Microsoft-EXCEL.
C-6Umiejętność wykorzystania arkuszy kalkulacyjnych we wspomaganiu decyzji inwestycyjnych.
Metody nauczaniaM-1Wykład informacyjny z prezentacją elektroniczną.
M-3Z użyciem komputera - rozwiązywanie (w grupach 2, 3 osobowych) zestawów zadań przesłanych studentom z conajmniej tygodniowym wyprzedzeniem.
M-4Objaśnienie (na ostatnich zajęciach laboratoryjnych): zestaw zadań zaliczających laboratoria, kryteria oceniania, określenie wymagań formalnych i merytorycznych.
Sposób ocenyS-2Ocena podsumowująca: Ocena rozwiązania zestawu zadań zaliczających laboratoria (rozwiązania przesłane drogą elektroniczną).
S-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
S-1Ocena formująca: Na początku laboratorium - krótkie zaliczenie zadania postawionego na poprzednich zajęciach.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student umie dobrać i wykorzystać odpowiednie narzędzia i funkcje arkusza kalkulacyjnego do obliczeń wspomagających decyzje inwestycyjne i kapitałowe.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_U03Student powinien umieć opracować i sporządzić w arkuszu kalkulacyjnym model optymalizacyjny problemu decyzyjnego, rozwiązać taki model, wyszukać, ocenić i zinterpretować możliwe alternatywy decyzji.
Cel przedmiotuC-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student umie opracować i sporządzić w arkuszu kalkulacyjnym model optymalizacyjny problemu decyzyjnego, rozwiązać taki model, wyszukać, ocenić i zinterpretować możliwe alternatywy decyzji.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_K01Dbałość o zwięzły i precyzyjny opis wyników obliczeń.
Cel przedmiotuC-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Dbałość o zwięzły i precyzyjny opis wyników obliczeń.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_K02Aktywna postawa i chęć pracy w zespole.
Cel przedmiotuC-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Aktywna postawa i chęć pracy w zespole.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O6/09_K03Kreatywność i zdolność do współpracy podczas tworzenia i prezentacji tematu zadanego studentom w ramach samodzielnego opracowania.
Cel przedmiotuC-2Umiejętność budowy prostego modelu sytuacji decyzyjnej.
Metody nauczaniaM-2Dyskusja dydaktyczna - wykład-prezentacja elektroniczna przygotowana przez studentów-ochotników (na wcześniej zadany temat i w oparciu o materiały udostępnione przez wykładowcę) połączona z dyskusją.
Sposób ocenyS-3Ocena podsumowująca: Ocena z treści teoretycznych (wykładów) na egzaminie w formie testu wielokrotnego wyboru (efekt - na papierze).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Kreatywność i zdolność do współpracy podczas tworzenia i prezentacji tematu zadanego studentom w ramach samodzielnego opracowania.
3,5
4,0
4,5
5,0