Wydział Informatyki - Informatyka (S1)
specjalność: systemy komputerowe i oprogramowanie
Sylabus przedmiotu Analiza matematyczna i algebra liniowa I:
Informacje podstawowe
Kierunek studiów | Informatyka | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Analiza matematyczna i algebra liniowa I | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Studium Matematyki | ||
Nauczyciel odpowiedzialny | Zofia Stępień <Zofia.Stepien@zut.edu.pl> | ||
Inni nauczyciele | Zofia Stępień <Zofia.Stepien@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość matematyki w zakresie matury na poziomie podstawowym. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zdobycie przez studenta wiedzy i umiejętności w zakresie omawianych treści programowych, niezbędnych do dalszego kształcenia na kierunkach technicznych oraz do korzystania z metod matematycznych. |
C-2 | Uświadomienie potrzeby systematycznej i uczciwej pracy. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Rozwiązywanie zadań i problemów w zakresie treści programowych omawianych na wykładzie. | 30 |
30 | ||
wykłady | ||
T-W-1 | Macierze, działanie na macierzach, macierz odwrotna. Wyznacznik i jego własności. | 6 |
T-W-2 | Układy równań liniowych, wzory Cramera, metoda eliminacji Gaussa, twierdzenie Kroneckera-Capellego. | 4 |
T-W-3 | Geometria analityczna: rachunek wektorowy, prosta i płaszczyzna w przestrzeni, równanie sfery. | 6 |
T-W-4 | Rachunek różniczkowy funkcji rzeczywistej jednej zmiennej: ciągi liczbowe, granica ciągu, granica funkcji, ciągłość funkcji, pochodna i jej interpretacja, różniczka funkcji, twierdzenie Taylora, ekstrema funkcji. | 14 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Udział w ćwiczeniach audytoryjnych . | 30 |
A-A-2 | Samodzielne rozwiązywanie zadań, przygotowanie do sprawdzianów. | 49 |
A-A-3 | Konsultacje. | 4 |
83 | ||
wykłady | ||
A-W-1 | Udział w wykładach. | 30 |
A-W-2 | Samodzielne studiowanie tematyki wykładów oraz wkazanej literatury. | 10 |
A-W-3 | Przygotownie do egzaminu. | 25 |
A-W-4 | Egzamin. | 2 |
67 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjno-problemowy. |
M-2 | Ćwiczenia audytoryje, dyskusja, metody problemowe. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Egzamin pisemny połączony z egzaminem ustnym. |
S-2 | Ocena podsumowująca: Sprawdziany zaliczające ćwiczenia audytoryjne oraz poprawy sprawdzianów. |
S-3 | Ocena formująca: Wykład: na podstawie dyskusji. Ćwiczenia audytoryjne: na podstawie samodzielnego lub z pomocą grupy rozwiązywania zadań przy tablicy. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_B/01/1_W01 Student zna podstawowe definicje , twierdzenia i metody rachunkowe omawiiane w ramach przedmiotu. | I_1A_W01 | — | — | C-1 | T-A-1, T-W-4, T-W-1, T-W-2, T-W-3 | M-1 | S-1, S-3 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_B/01/1_U01 Student posługuje się językiem matematycznym i i potrafi zastosować poznane,definicje, wzory i twierdzenia do rozwiazywania zadań | I_1A_U17, I_1A_U20 | — | — | C-1, C-2 | T-A-1 | M-1, M-2 | S-1, S-3 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_B/01/1_K01 Student rozumie potrzebę przestrzegania ustalonych reguł i praw oraz systematycznej i uczciwej pracy. Zna ograniczenia własnej wiedzy i widzi potrzebę dalszego ksztalcenia się | I_1A_K02, I_1A_K01 | — | — | C-2 | T-A-1, T-W-4, T-W-1, T-W-2, T-W-3 | M-1, M-2 | S-1, S-2, S-3 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
I_1A_B/01/1_W01 Student zna podstawowe definicje , twierdzenia i metody rachunkowe omawiiane w ramach przedmiotu. | 2,0 | Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu |
3,0 | Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe | |
3,5 | Student zna prawie wszystkie podstawowe definicje i twierdzenia, niektóre z nich umie zilustrować przykładami, zna niektóre algorytmy obliczeniowe | |
4,0 | Student zna większość - definicji podstawowych pojęć i umie je zilustrować na przykładach - twierdzeń z interpretacją geometryczną - algorytmów obliczeniowych | |
4,5 | Student zna prawie wszystkie - definicje podstawowych pojęć , umie je objaśnić na przykładach i podać ich ważniejsze własności - twierdzenia wraz z ich interpretacją geometryczną lub dowodem - algorutmy obliczeniowe | |
5,0 | Student zna prawie wszystkie - definicje pojęć omawianych w ramach przedmiotu, podać ich interpretację ,potrafi wymienić ich własności - twierdzenia z interpretacją geometryczna lub dowodem (o ile buł on omawiany na wykładzie) - wyprowadzenia podstawowych wzorów _ wszyskie algorytmy obliczeniowe - stosuje swoją wiedzę w niektórych zadaniach problemowych |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
I_1A_B/01/1_U01 Student posługuje się językiem matematycznym i i potrafi zastosować poznane,definicje, wzory i twierdzenia do rozwiazywania zadań | 2,0 | Nie spełnia wymagań na ocenę 3,0 |
3,0 | Student potrafi rozwiązywać zadania o średnim i niskim poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik. | |
3,5 | Student potrafi samodzielnie rozwiązywać typowe zadania o średnim i wyższym poziomie trudności oraz przedstawić poprawne rozwiązanie z komentarzem zawierającym usterki i niedociagnięcia. Sprawnie wykonuje obliczenia często z błędami rachunkowymi nie wpływajacymi na wynik | |
4,0 | Student potrafi samodzielnie rozwiazywać zadania na średnim i wyzszym poziomie trudności stosująć poprawny zapis i komentarz z nielicznymi usterkami. Przedstawić poprawny tok rozumowania. i poprawne obliczenia. Potrafi weryfikowac i interpretować wyniki. | |
4,5 | Student potrafi samodzielnie rozwiązywać trudne zadania stosując poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi definiować i posługiwać się definicją. Potrafi weryfikować i interpretować wyniki. | |
5,0 | Student potrafi samodzielnie rozwiązać wszystkie zadania stosując przejrzysty, symboliczny język zapisu z poprawnym komentarzem oraz pomyslowe metody rozwiazywania. Weryfikuje i interpretuje wyniki. Potrafi uogólniać przykłady i uzyskiwać potrzebną informację szczególną z ogólnych reguł. Potrafi samodzielnie zdobywać wiedzę. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
I_1A_B/01/1_K01 Student rozumie potrzebę przestrzegania ustalonych reguł i praw oraz systematycznej i uczciwej pracy. Zna ograniczenia własnej wiedzy i widzi potrzebę dalszego ksztalcenia się | 2,0 | Student nie uczęszcza na ćwiczenia i na wyklady. . Nie wykazuje chęci współpracy w celu uzupelnienia braków i nabycia podstawowej wiedzy.. Oceny pozytywne usiłuje zdobyć nieuczciwymi metodami. |
3,0 | Student uczęszcza na ćwiczenia.. Rozwiązuje zadania domowe. Na kolokwiach i egzaminach pracuje samodzielnie. Wykazuje chęć uzupełnienia braków | |
3,5 | Student uczeęzcza na ćwiczenia.. Na egzaminachi kolokwiach pracuje samodzielnie. Systematycznie przygotowukje się do zajęć. Aktywnie uczestniczy w zajęciach , azeby lepiej rozumieć nowe zagadnieniai | |
4,0 | Student uczęszcza na ćwiczenia i wykłady.. Przygotowuje się systematycznie do zajęć. Na kolokwiach i egzaminach pracuje samodzielnie. Wykazuje zainteresowanie przedstawianymi zagadnieniami. Gzęsto zgłasza się z pytaniami. | |
4,5 | Student uczęszcza na ćwiczenia, wykłady i konsultacje. Systematycznie przygotowuje się do zajęć. Na kolokwiach i egzaminach pracuje samodzielnie. Wykazuje chęć głębszego poznania zagadnień, studiując polecane podręczniki | |
5,0 | Student uczęszcza na ćwiczenia, wykłady i konsultacje. Na kolokwium pracuie samodzielnie. Przygotowuje się systematycznie do zajęć,.Porszerzaj swoja wiedzę o nowe treści studiując dodatkową literaturę. . Na ćwiczeniach przejmuie rol lidera przy zespołowym rozwiązywaniu zadan i problemów. |
Literatura podstawowa
- M.arian Gewert, Z.bigniew Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2007, Dostępne są rózne wydania
- Marian Gewert, Zbigniew Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna wydawnicza GiS, Wrocław, 2007, Dostępne są rózne wydania
- Teresa Jurlewicz, Zbigniew Skoczylas, Algebra liniowa1. Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław, 2006, Dostępne są różne wydania
- Teresa Jurlewicz, Zbigniew Skoczylas, Algebra liniowa 1. Przykłady i zadania, Oficyna wydawnicza GiS, Wrocław, 2006, Dostępne są różne wydania
- W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach cz. 1, PWN, Warszawa 2000, 2000, dostępne są różne wydania
Literatura dodatkowa
- W.Żakowski,W. Kołodziej, Matematyka cz 1, WNT, Warszawa, 2003
- Bermann, Zbiór zadań z Analizy matematecznej, Wydawnictwo pracowni komputerowej jacka Skalmierskiego, 1999