Wydział Informatyki - Inżynieria cyfryzacji (N1)
specjalność: Zastosowania informatyki
Sylabus przedmiotu Eksploracja danych - Przedmiot obieralny II:
Informacje podstawowe
Kierunek studiów | Inżynieria cyfryzacji | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Eksploracja danych - Przedmiot obieralny II | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej | ||
Nauczyciel odpowiedzialny | Marcin Korzeń <Marcin.Korzen@zut.edu.pl> | ||
Inni nauczyciele | Przemysław Klęsk <pklesk@wi.zut.edu.pl>, Valery Rogoza <wrogoza@zut.edu.pl> | ||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 2 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawowe wiadomości z rachunku prawdopodobieństwa i statystyki |
W-2 | Podstawowe wiadomości z algebry liniowej |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie się z różnymi technikami analizy i eksploracji danych |
C-2 | Ukształtowanie umiejętności rozpoznawania róznych metod eksploracji danych w sytuacjach praktycznych oraz wyboru odpowiednich technik to ich rozwiązywania |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Narzędzia analizy danych, Analiza danych w programach Matlab i R, wczytywanie danych, publiczne repozytoria danych | 4 |
T-L-2 | Analiza składowych głównych - zastosowanie do wizualizacji dancyh | 2 |
T-L-3 | Testowanie klasyfikatora, metoda krosswalidacji | 2 |
T-L-4 | Techiniki klasyfikacji: Naiwny klasyfikator Bayesowski, drzewa decyzyjne, k-NN, kasyfikatory funkcyjne: regresjia logistyczna, sieci neuronowe. Zapozninie się z bibliotekami, ekperymentalne porównujące własnośc maszyn kasyfikujących pod względem złożoności próbkowej, skalowanie się algorytmów ze względu na rozmiar danych (liczbę atrybutów i rekordów), eksperymenty na danych rzeczywistych. | 10 |
T-L-5 | Algorytmy grupowania danych: metody hierarchiczne, algorytm k-środków, algorytm EM | 8 |
T-L-6 | Algorytm wyszukiwania reguł asocjacyjnych (implemetacja) warianty apriori lub algorytm wykorzystujący drzewo wyliczające podzbiory, wyszukiwanie reguł pareto-optymalnych | 4 |
30 | ||
wykłady | ||
T-W-1 | Komponenty zadania ekslporacji danych, algorytmiczne aspekty eksploracji danych. | 2 |
T-W-2 | Rodzaje zadań eksploracji danych: identyfikacja rozkłądu, klasyfikacja, regresja, wykrywanie reguł i wzorców. Metody preprocesingu danych: braki w danych, skalowanie i dyskretyzacja atrybutów, techiki wizualizacji, metoda PCA, metody identyfikacji rozkładów | 2 |
T-W-3 | Identyfikacja rozkładu i grupwanie, metoda największej wiarygodności, algorytm EM oraz algorytm K-środków | 2 |
T-W-4 | Ocena jakości maszyn klasyfikujących i regresyjnych, testowanie, kroswalidacja, metoda bootstrap | 2 |
T-W-5 | Klasyfikator bayesa, założenie naiwne, optymalny klasyfikator bayesowski | 2 |
T-W-6 | Drzewa klasyfikujące, budowa drzewa, miary zanieczyszczenia, przycinanie, algorytm CART | 2 |
T-W-7 | Wykrywanie reguł asocjacujnych, wsparcie, zaufanie, algorytm apriori, algorytm wykorzystujący drzewo wyliczające podzbiory, reguły pareto-optymalne | 3 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach | 30 |
A-L-2 | przygotowanie do zajęć | 2 |
A-L-3 | praca nad zadaniami programistycznymi oraz sprawozdaniami | 2 |
A-L-4 | Udział w konsultacjach i zaliczeniu | 2 |
36 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach | 15 |
A-W-2 | konsultacje | 2 |
A-W-3 | Przygotowanie do egzaminu | 8 |
25 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład prezentacja w postaci slajdów |
M-2 | Laboratoria praca przy komputerach w środowisku programu Matlab, Python lub R, głównie wykorzystywnie dostępnych bibliotek, oraz przygotowywanie sprawozdań |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: laboratorium ocena sprawozdań |
S-2 | Ocena formująca: Laboratorium: ocena zadań |
S-3 | Ocena formująca: Laboratorium: ocena pracy na zajęciach |
S-4 | Ocena podsumowująca: egzamin ustny |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IC_1A_O/02-01_W01 Po ukończeniu zajęć student rozróżnia podstawowe pojecia oraz zadania analizy danych, zna podstawowe techniki eksploracji danych oraz umie je stosować w sytuacjach praktycznych w sytuacjach praktycznych, zna wybrane algorytmy eksploracji danych | IC_1A_W04, IC_1A_W07 | — | — | C-2, C-1 | T-W-1, T-W-5, T-W-4, T-W-3, T-W-6, T-W-2, T-W-7, T-L-3, T-L-1, T-L-5, T-L-4, T-L-2, T-L-6 | M-1, M-2 | S-1, S-3, S-4 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IC_1A_O/02-01_U01 Student potrafi potrafi stosowac algorytmy elsploracji danych w zadaniach praktycznych oraz umie implementiowac wybrane algorytmy | IC_1A_U24, IC_1A_U19 | — | — | C-2, C-1 | T-W-1, T-W-5, T-W-4, T-W-3, T-W-6, T-W-2, T-W-7, T-L-3, T-L-1, T-L-5, T-L-4, T-L-2, T-L-6 | M-1, M-2 | S-1, S-3, S-2, S-4 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IC_1A_O/02-01_W01 Po ukończeniu zajęć student rozróżnia podstawowe pojecia oraz zadania analizy danych, zna podstawowe techniki eksploracji danych oraz umie je stosować w sytuacjach praktycznych w sytuacjach praktycznych, zna wybrane algorytmy eksploracji danych | 2,0 | Student nie przyswoił sobie podstawowej wiedzy z zakresu eksploracji danych |
3,0 | Student przyswoił sobie podstawową wiedzę z zakresu eksploracji danych w stopniu zadowalającym | |
3,5 | Student przyswoił sobie podstawową wiedzę z zakresu eksploracji danych | |
4,0 | Student przyswoił sobie prezentowaną na zajęciach wiedzę z zakresu eksploracji danych | |
4,5 | Student przyswoił sobie prezentowaną na zajęciach wiedzę z zakresu eksploracji danych, zna algorytmy aksploracji danych umie je stosować w problemach praktycznych | |
5,0 | Student przyswoił sobie prezentowaną na zajęciach wiedzę z zakresu eksploracji danych, zna algorytmy aksploracji danych umie je stosować w problemach praktycznych, zna zalety i ograniczenia stosowanych metod i algorytmów |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
IC_1A_O/02-01_U01 Student potrafi potrafi stosowac algorytmy elsploracji danych w zadaniach praktycznych oraz umie implementiowac wybrane algorytmy | 2,0 | Student nie przyswoił sobie podstawowych umiejętności rozwiązywania problemów oraz implementacji algorytmów z zakresu ekspoloracji danych |
3,0 | Student przyswoił sobie podstawowe umiejętności rozwiązywania problemów oraz implementacji algorytmów z zakresu ekspoloracji danych w stopniu zadowalającycm | |
3,5 | Student przyswoił sobie podstawowe umiejętności rozwiązywania problemów oraz implementacji algorytmów z zakresu ekspoloracji danych | |
4,0 | Student przyswoił sobie umiejętności rozwiązywania problemów oraz implementacji algorytmów w zakresie prezentowanym na zajęciach | |
4,5 | Student przyswoił sobie umiejętności rozwiązywania problemów oraz implementacji algorytmów w zakresie prezentowanym na zajęciach, przy rozwiazywaniu zadań wykazyje sie pomysłowością i kreatywnością | |
5,0 | Student przyswoił sobie umiejętności rozwiązywania problemów oraz implementacji algorytmów w zakresie prezentowanym na zajęciach, umie dodatkowo wybrać optymalny sposób implementacji algorytmu oraz w wskazać najlepsze metody do rozwiazania konkretnego zagadnienia |
Literatura podstawowa
- J. Ćwik, J. Koronacki, Statystyczne systemy uczące, Akademicka oficyna wydawnicza EXIT, Warszawa, 2008
- David MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003