Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Inżynieria cyfryzacji (N1)

Sylabus przedmiotu Sprzęt i architektura komputerów I:

Informacje podstawowe

Kierunek studiów Inżynieria cyfryzacji
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Sprzęt i architektura komputerów I
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Architektury Komputerów i Telekomunikacji
Nauczyciel odpowiedzialny Mirosław Łazoryszczak <Miroslaw.Lazoryszczak@zut.edu.pl>
Inni nauczyciele Radosław Maciaszczyk <Radoslaw.Maciaszczyk@zut.edu.pl>, Krzysztof Makles <Krzysztof.Makles@zut.edu.pl>
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 20 3,10,62egzamin
laboratoriaL1 16 2,90,38zaliczenie

Wymagania wstępne

dla tego przedmiotu nie są określone wymagania wstępne

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Wiedza o elementach systemów komputerowych.
C-2Wiedza z zakresu podstaw techniki cyfrowej.
C-3Umiejętność czytania schematów blokowych architektur procesorów.
C-4Umiejętność pisania elementarnych programów wykorzystujących wybrane elementy systemów komputerowych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Systemy liczbowe, konwersja pomiędzy systemami i podstawy arytmetyki binarnej.2
T-L-2Podstawowe funktory logiczne.2
T-L-3Wybrane układy kombinacyjne.2
T-L-4Podstawowe elementy sekwencyjne - przerzutniki.2
T-L-5Wybrane układy sekwencyjne.2
T-L-6Podstawy VHDL2
T-L-7Assembler procesora z rodziny x86.4
16
wykłady
T-W-1Podstawowe pojęcia z zakresu architektury komputerów. Ogólna budowa i funkcje komputera. Systemy liczbowe.2
T-W-2Podstawy arytmetyki binarnej.2
T-W-3Budowa i funkcje mikroporocesora (ALU, rejestry, cykl rozkazowy).2
T-W-4Podstawy budowy i działania pamięci komputerowych.2
T-W-5Systemy wejścia/wyjścia i sposoby współpracy z mikroprocesorem i pamięciami.2
T-W-6Działanie mikroporocesora - lista rozkazów, adresowanie, elementy asemblera.2
T-W-7Budowa wybranych elementów mikroprocesora – układy kombinacyjne – podstawy algebry Boole’a, funkcje i funktory logiczne.2
T-W-8Minimalizacja funkcji logicznych.2
T-W-9Przerzutniki jako przykład podstawowych elementów sekwencyjnych.2
T-W-10Układy sekwencyjne, automat skończony.2
20

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w ćwiczeniach laboratoryjnych16
A-L-2Udział w konsultacjach4
A-L-3Przygotowanie do zajęć laboratoryjnych.44
A-L-4Opracowanie raportów/dokumentacji z przeprowadzonych ćwiczeń.26
90
wykłady
A-W-1Uczestnictwo w zajęciach20
A-W-2Udział w konsultacjach i egzaminie5
A-W-3Przygotowanie do egzaminu i samodzielne studiowanie literatury przedmiotu67
92

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2Ćwiczenia laboratoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Sprawdziany wstępne przed wybranymi ćwiczeniami laboratoryjnymi.
S-2Ocena formująca: Ocena raportów lub dokumentacji z wykonanych ćwiczeń.
S-3Ocena podsumowująca: Egzamin z elementami problemowymi.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IC_1A_B/05/01_W01
Student zna elementy architektury systemów komputerowych oraz zna podstawy funkcjonowania systemu komputerowego w kontekście klasycznej techniki cyfrowej.
IC_1A_W02C-1, C-2T-W-10, T-W-4, T-W-6, T-W-7, T-W-8, T-W-2, T-W-3, T-W-5, T-W-1, T-W-9M-1S-3, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IC_1A_B/05/01_U01
Student umie na elementarnym poziomie programować aplikacje wykorzystujace podstawowe urzadzenia oraz potrafi konfigurować systemy komputerowe w celu zapewnienia określonej efektywności.
IC_1A_U06C-4, C-3T-L-6, T-L-2, T-L-1, T-L-3, T-L-4, T-L-5, T-L-7M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
IC_1A_B/05/01_W01
Student zna elementy architektury systemów komputerowych oraz zna podstawy funkcjonowania systemu komputerowego w kontekście klasycznej techniki cyfrowej.
2,0Nie spełnia minimalnych wymagań na ocenę pozytywną.
3,0Opisuje podstawowe architektury komputerów oraz zagadnienia warstwy fizycznej otoczenia procesora. Zna podstawy asemblera. Zna podstawy techniki cyfrowej.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
IC_1A_B/05/01_U01
Student umie na elementarnym poziomie programować aplikacje wykorzystujace podstawowe urzadzenia oraz potrafi konfigurować systemy komputerowe w celu zapewnienia określonej efektywności.
2,0Nie spełnia minimalnych wymagań na ocenę pozytywną.
3,0Potrafi w stopniu podstawowym wykonać elementarne zadania polegające na programowaniu elementów systemu wybranych platform komputerowych z wykorzystaniem języka asemblera i języków wyższego poziomu. Potrafi posługiwać się w elementarnym stopniu narzędziami do symulacji układów cyfrowych.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Stallings W., Organizacja i architektura systemu komputerowego. Projektowanie systemu a jego wydajność., WNT, Warszawa, 2004, 3
  2. Tanenbaum A. S., Strukturalna organizacja systemów komputerowych, Helion, Gliwice, 2006, 5
  3. Mano M. M., Kime Ch. R., Podstawy projektowania układów logicznych i komputerów, WNT, Warszawa, 2007, 1

Literatura dodatkowa

  1. Hennessy J. L., Patterson D. A., Computer Architecture. A Quantitative Approach, Elsevier, Morgan Kaufmann, 2007, 4
  2. Patterson D. A., Hennessy J. L., Computer Organization and Design. The hardware/software interface, Elsevier, Morgan Kaufmann, 2009, 4
  3. Metzger P., Anatomia PC, Helion, Gliwice, 2007, 11

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Systemy liczbowe, konwersja pomiędzy systemami i podstawy arytmetyki binarnej.2
T-L-2Podstawowe funktory logiczne.2
T-L-3Wybrane układy kombinacyjne.2
T-L-4Podstawowe elementy sekwencyjne - przerzutniki.2
T-L-5Wybrane układy sekwencyjne.2
T-L-6Podstawy VHDL2
T-L-7Assembler procesora z rodziny x86.4
16

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia z zakresu architektury komputerów. Ogólna budowa i funkcje komputera. Systemy liczbowe.2
T-W-2Podstawy arytmetyki binarnej.2
T-W-3Budowa i funkcje mikroporocesora (ALU, rejestry, cykl rozkazowy).2
T-W-4Podstawy budowy i działania pamięci komputerowych.2
T-W-5Systemy wejścia/wyjścia i sposoby współpracy z mikroprocesorem i pamięciami.2
T-W-6Działanie mikroporocesora - lista rozkazów, adresowanie, elementy asemblera.2
T-W-7Budowa wybranych elementów mikroprocesora – układy kombinacyjne – podstawy algebry Boole’a, funkcje i funktory logiczne.2
T-W-8Minimalizacja funkcji logicznych.2
T-W-9Przerzutniki jako przykład podstawowych elementów sekwencyjnych.2
T-W-10Układy sekwencyjne, automat skończony.2
20

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w ćwiczeniach laboratoryjnych16
A-L-2Udział w konsultacjach4
A-L-3Przygotowanie do zajęć laboratoryjnych.44
A-L-4Opracowanie raportów/dokumentacji z przeprowadzonych ćwiczeń.26
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach20
A-W-2Udział w konsultacjach i egzaminie5
A-W-3Przygotowanie do egzaminu i samodzielne studiowanie literatury przedmiotu67
92
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIC_1A_B/05/01_W01Student zna elementy architektury systemów komputerowych oraz zna podstawy funkcjonowania systemu komputerowego w kontekście klasycznej techniki cyfrowej.
Odniesienie do efektów kształcenia dla kierunku studiówIC_1A_W02Zna architektury systemów komputerowych
Cel przedmiotuC-1Wiedza o elementach systemów komputerowych.
C-2Wiedza z zakresu podstaw techniki cyfrowej.
Treści programoweT-W-10Układy sekwencyjne, automat skończony.
T-W-4Podstawy budowy i działania pamięci komputerowych.
T-W-6Działanie mikroporocesora - lista rozkazów, adresowanie, elementy asemblera.
T-W-7Budowa wybranych elementów mikroprocesora – układy kombinacyjne – podstawy algebry Boole’a, funkcje i funktory logiczne.
T-W-8Minimalizacja funkcji logicznych.
T-W-2Podstawy arytmetyki binarnej.
T-W-3Budowa i funkcje mikroporocesora (ALU, rejestry, cykl rozkazowy).
T-W-5Systemy wejścia/wyjścia i sposoby współpracy z mikroprocesorem i pamięciami.
T-W-1Podstawowe pojęcia z zakresu architektury komputerów. Ogólna budowa i funkcje komputera. Systemy liczbowe.
T-W-9Przerzutniki jako przykład podstawowych elementów sekwencyjnych.
Metody nauczaniaM-1Wykład informacyjny.
Sposób ocenyS-3Ocena podsumowująca: Egzamin z elementami problemowymi.
S-1Ocena formująca: Sprawdziany wstępne przed wybranymi ćwiczeniami laboratoryjnymi.
Kryteria ocenyOcenaKryterium oceny
2,0Nie spełnia minimalnych wymagań na ocenę pozytywną.
3,0Opisuje podstawowe architektury komputerów oraz zagadnienia warstwy fizycznej otoczenia procesora. Zna podstawy asemblera. Zna podstawy techniki cyfrowej.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIC_1A_B/05/01_U01Student umie na elementarnym poziomie programować aplikacje wykorzystujace podstawowe urzadzenia oraz potrafi konfigurować systemy komputerowe w celu zapewnienia określonej efektywności.
Odniesienie do efektów kształcenia dla kierunku studiówIC_1A_U06Umie opisywać i analizować działanie podstawowych systemów technicznych na poziomie sprzętu i oprogramowania
Cel przedmiotuC-4Umiejętność pisania elementarnych programów wykorzystujących wybrane elementy systemów komputerowych.
C-3Umiejętność czytania schematów blokowych architektur procesorów.
Treści programoweT-L-6Podstawy VHDL
T-L-2Podstawowe funktory logiczne.
T-L-1Systemy liczbowe, konwersja pomiędzy systemami i podstawy arytmetyki binarnej.
T-L-3Wybrane układy kombinacyjne.
T-L-4Podstawowe elementy sekwencyjne - przerzutniki.
T-L-5Wybrane układy sekwencyjne.
T-L-7Assembler procesora z rodziny x86.
Metody nauczaniaM-2Ćwiczenia laboratoryjne.
Sposób ocenyS-2Ocena formująca: Ocena raportów lub dokumentacji z wykonanych ćwiczeń.
Kryteria ocenyOcenaKryterium oceny
2,0Nie spełnia minimalnych wymagań na ocenę pozytywną.
3,0Potrafi w stopniu podstawowym wykonać elementarne zadania polegające na programowaniu elementów systemu wybranych platform komputerowych z wykorzystaniem języka asemblera i języków wyższego poziomu. Potrafi posługiwać się w elementarnym stopniu narzędziami do symulacji układów cyfrowych.
3,5
4,0
4,5
5,0