Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S1)
Sylabus przedmiotu Zjawiska korozyjne i podstawy ochrony:
Informacje podstawowe
Kierunek studiów | Energetyka | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Zjawiska korozyjne i podstawy ochrony | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Instytut Inżynierii Materiałowej | ||
Nauczyciel odpowiedzialny | Anna Biedunkiewicz <Anna.Biedunkiewicz@zut.edu.pl> | ||
Inni nauczyciele | Renata Chylińska <Renata.Chylinska@zut.edu.pl>, Agnieszka Kochmańska <Agnieszka.Kochmanska@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 5 | Grupa obieralna | 2 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość chemii, fizyki i matematyki na poziomie średnim - zaliczenie Chemii, Fizyki I oraz Matematyki I. |
W-2 | Wiedza na temat budowy i właściwości materiałów konstrukcyjnych. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z korozji o ochrony materiałów i/lub konstrukcji i/lub urządzeń. |
C-2 | Student zdobywa podstawową wiedzę i umiejętność stosowania metod matematycznych do opisu procesów korozyjnych i badan korozyjnych. |
C-3 | Student zdobywa umiejętość korzystania ze źródeł literatury. |
C-4 | Student zdobywa umiejętność pracy w zespole. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Pasywność metali. Ogniwa galwaniczne i korozyjne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Elektrochemiczna spektroskopia impedancyjna. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu. Badanie walorów ochronnych powłok antykorozyjnych. Ochrona katodowa i anodowa. Wytwarzanie powłok antykorozyjnych. | 30 |
30 | ||
wykłady | ||
T-W-1 | Klasyfikacja zjawisk korozyjnych. Przykłady błędów konstrukcyjnych. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Powinowactwo metali z tlenem. Stan pasywny metali. Osiem form korozji: galwaniczna, naprężeniowa, wżerowa, szczelinowa, międzykrystaliczna, selektywna, korozja-erozja, pękanie wodorowe. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Ochrona przed korozją na etapie projektowania konstrukcji. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Powłoki ochronne. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Wpływ korozji na właściwości mechaniczne, elektryczne materiałów. Sposoby monitorowania korozji. Niekonwencjonalne materiały w ochronie przed korozją | 15 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Przygotowanie do zajęć na podstawie wskazanej literatury, przygotowanie sprawozdań z ćwiczeń laboratoryjnych | 28 |
A-L-2 | Uczestnictwo w zajęciach laboratoryjnych i udział w zaliczeniu ćwiczeń. | 30 |
A-L-3 | Udział w konsultacjach | 2 |
60 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach i zaliczeniu przedmiotu. | 15 |
A-W-2 | Studiowanie wskazanej literatury | 13 |
A-W-3 | Udział w konsultacjach | 2 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe. |
M-2 | Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. |
M-3 | Ćwiczenia laboratoryjne. Analiza wyników eksperymentów połączona z dyskusją dydaktyczną (okrągłego stołu). Prezentacje sprawozdań z przeprowadzonej analizy. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ćwiczenia laboratoryjne : Na podstawie krótkich sprawdzianów wiedzy przygotowanej do ćwiczeń (9 sprawdzianów) student uzyskuje ocenę z ćwiczenia. |
S-2 | Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie ćwiczenia. |
S-3 | Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuję po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok. 50% punktów z zaliczenia pisemnego. |
S-4 | Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6). |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ENE_1A_C09-2_W01 Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozumie, że odporność korozyjna materiału nie jest cechą niezmienną, lecz zależy od jego struktury oraz w bardzo dużej mierze od składu chemicznego i innych parametrów środowiska oraz, że niszczenie materiałów może wynikać nie tylko z elektro- lub chemicznego oddziaływania środowiska lecz również z oddziaływań mechanicznych, elektrycznych i że często te czynniki działają synergetycznie. Student rozpoznaje zjawiska elektrokorozji spowodowane prądami błądzącymi. Wskazuje zagrożenia wynikające z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Ma wiedzę o sposobach zapobiegania elektrokorozji. | ENE_1A_W07, ENE_1A_W12, ENE_1A_W21 | — | — | C-1, C-3, C-4, C-2 | T-W-1, T-L-1 | M-1, M-3, M-2 | S-1, S-2, S-3, S-4 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ENE_1A_C09-2_U01 Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. | ENE_1A_U21, ENE_1A_U01, ENE_1A_U06, ENE_1A_U14 | — | — | C-1, C-3, C-4, C-2 | T-W-1, T-L-1 | M-1, M-3, M-2 | S-1, S-2, S-3, S-4 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ENE_1A_C09-2_K01 Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania | ENE_1A_K03, ENE_1A_K04 | — | — | C-1, C-3, C-4, C-2 | T-W-1, T-L-1 | M-1, M-3, M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ENE_1A_C09-2_W01 Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozumie, że odporność korozyjna materiału nie jest cechą niezmienną, lecz zależy od jego struktury oraz w bardzo dużej mierze od składu chemicznego i innych parametrów środowiska oraz, że niszczenie materiałów może wynikać nie tylko z elektro- lub chemicznego oddziaływania środowiska lecz również z oddziaływań mechanicznych, elektrycznych i że często te czynniki działają synergetycznie. Student rozpoznaje zjawiska elektrokorozji spowodowane prądami błądzącymi. Wskazuje zagrożenia wynikające z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Ma wiedzę o sposobach zapobiegania elektrokorozji. | 2,0 | Student nie posiada wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student nie rozpoznaje zjawisk elektrokorozji i nie wie o zagrożeniach wynikających z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. |
3,0 | Student posiada wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozpoznaje zjawiska elektrokorozji i wie o zagrożeniach wynikających z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Zna sposoby zapobiegania korozji. | |
3,5 | Student posiada szerszą wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozpoznaje zjawiska elektrokorozji i wie o zagrożeniach wynikających z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Zna sposoby zapobiegania korozji. | |
4,0 | Student posiada zaawansowaną wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozpoznaje zjawiska elektrokorozji i wie o zagrożeniach wynikających z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Zna sposoby zapobiegania korozji. | |
4,5 | Student posiada zaawansowaną wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozpoznaje zjawiska elektrokorozji i wie o zagrożeniach wynikających z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Posiada szeroką wiedzę o sposobach zapobiegania korozji. | |
5,0 | Student posiada zaawansowaną wiedzę o zjawiskach zachodzących podczas korozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów i produkcji. Student rozpoznaje zjawiska elektrokorozji i wie o zagrożeniach wynikających z błędów konstrukcyjnych i niewłaściwych zabezpieczeń. Posiada szeroką wiedzę o sposobach zapobiegania korozji. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ENE_1A_C09-2_U01 Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. | 2,0 | Student nie potrafi określić zagrożeń korozyjnych urządzeń i konstrukcji energetycznych wynikających z warunków ich eksplatacji oraz wskazać sposobów ochrony i/lub doboru odpornego materiału, nie potrafi interpretować objawów zniszczeń korozyjnych materiałów i wskazać prawdopodobnych jego przyczyn. |
3,0 | Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. | |
3,5 | Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. Potrafi wskazać sposoby monitorowania korozji. | |
4,0 | Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. Potrafi wskazać sposoby monitorowania korozji. Potarfi wykonać obliczenia zużycia i szybości korozji materiałów konstrukcyjnych oraz wykonać podstawowe pomiary parametrów elektrochemicznych materiału. | |
4,5 | Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. Rozumie zjawiska zniszczenia synergicznego na skutek nakładania się efektów wynikających z warunków eksploatacji konstrukcji. Potrafi wskazać sposoby monitorowania korozji. Potarfi wykonać obliczenia zużycia i szybości korozji materiałów konstrukcyjnych oraz wykonać podstawowe pomiary parametrów elektrochemicznych materiału oraz metodę ochrony przed korozją. | |
5,0 | Student potrafi określić zagrożenia korozyjne urządzeń i konstrukcji energetycznych wynikające z warunków ich eksplatacji oraz wskazać sposoby ochrony i/lub dobrać odporny materiał, potrafi interpretować objawy zniszczenia korozyjnego materiałów i wskazać prawdopodobne jego przyczyny. Rozumie zjawiska zniszczenia synergicznego na skutek nakładania się efektów wynikających z warunków eksploatacji konstrukcji. Potrafi wskazać sposoby monitorowania korozji. Potarfi wykonać obliczenia zużycia i szybości korozji materiałów konstrukcyjnych oraz wykonać podstawowe pomiary parametrów elektrochemicznych materiału. Potrafi przeprowadzić podstawowe badanie odporności materiału na korozję. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ENE_1A_C09-2_K01 Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania | 2,0 | Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. |
3,0 | Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie. | |
3,5 | Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie. | |
4,0 | Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie. | |
4,5 | Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie. | |
5,0 | Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie. |
Literatura podstawowa
- J.Baszkiewicz, M.Kamiński, Podstawy korozji materiałów, Oficyna Wydawnicza PW, Warszawa, 2006, II
- Burakowski T., Wierzchoń T., Inżynieria powierzchni metali, WNT, Warszawa, 1995, I
- H.H. Uhlig, Korozja i jej zapobieganie, WNT, Warszawa, 1996
- T. Hryniewicz, Technologia powierzchni i powłok, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 1999, I
- M. Pourbaix, Wykłady z korozji elektrochemicznej, PWN, Warszawa, 1978
- Baranowska j., Biedunkiewicz A., Chylińska R., Drotlew A., Fryska S., Garbiak M., Jasiński W., Jedrzejewski R., Kochmańska A., Kochmański P., Lenart S., Piekarski B., Ćwiczenia laboratoryjne z materiałów metalicznych., ZUT, Szczecin, 2013, I, Red.Piekarski B.
Literatura dodatkowa
- Groysman A., Corrosion for everybody, Springer Science + Business Media B.V., London, New York, Heidelberg, Dordrecht, 2010, ISBN 978-90-481-3476-2
- Ohring M., The Materials Science of Thin Solid Films, Academic Press, Inc., Boston, 1992, I