Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Chłodnictwo i Klimatyzacja (S1)

Sylabus przedmiotu Mechanika i wytrzymałość materiałów:

Informacje podstawowe

Kierunek studiów Chłodnictwo i Klimatyzacja
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Mechanika i wytrzymałość materiałów
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Konstrukcji, Mechaniki i Technologii Okrętów
Nauczyciel odpowiedzialny Maciej Taczała <Maciej.Taczala@zut.edu.pl>
Inni nauczyciele Maciej Taczała <Maciej.Taczala@zut.edu.pl>, Tomasz Urbański <Tomasz.Urbanski@zut.edu.pl>
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 15 2,00,25zaliczenie
wykładyW2 30 2,00,50egzamin
ćwiczenia audytoryjneA2 15 2,00,25zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowe wiadomości, kompetencje i umiejętności z matematyki
W-2Podstawowe wiadomości, kompetencje i umiejętności z fizyki

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawami teoretycznymi i metodami rozwiązywania zagadnień z zakresu mechaniki.
C-2Umiejetność oceny wytrzymałości elementów konstrukcyjnych z wykorzystaniem modeli obliczeniowych wytrzymałości materiałów.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.13
T-A-2Kolokwium nr 11
T-A-3Kolokwium nr 21
15
laboratoria
T-L-1Przeszkolenie BHP - stanowiskowe.1
T-L-2Statyczna próba rozciągania próbek ze stopów metali.2
T-L-3Statyczna próba ściskania próbek ze stopów metali.2
T-L-4Próba udarności stali.2
T-L-5Pomiary odkształceń układów sprężystych.3
T-L-6Próba wytrzymałości zmęczeniowej.3
T-L-7Zaliczenie formy zajęć.2
15
wykłady
T-W-1Podstawowe pojęcia i definicje stosowane w mechanice. Zasady statyki.1
T-W-2Płaski układ sił zbieżnych, warunki równowagi sił.1
T-W-3Pojecie momentu siły. Płaski dowolny układ sił.1
T-W-4Tarcie poślizgowe i tarcie toczne.1
T-W-5Prędkość i przyspieszenie. Twierdzenie o rzucie prędkości na linie łącząca dwa punkty ciała sztywnego.2
T-W-6Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego, chwilowy środek obrotu. Prędkości i przyspieszenia punktów w ruchu płaskim.2
T-W-7Zasady dynamiki. Dynamiczne równania ruchu punktu. Drgania układów mechanicznych.2
T-W-8Przedmiot i podstawowe pojęcia wytrzymałości materiałów. Doświadczalne podstawy określania własności mechanicznych materiałów.2
T-W-9Proste osiowe rozciąganie i ściskanie, prawo Hooke'a, zasada superpozycji. Układy prętowe statycznie niewyznaczalne.3
T-W-10Ścinanie technologiczne: połączenia sworzniowe, połączenia spawane.2
T-W-11Momenty bezwładności figur płaskich.2
T-W-12Skręcanie prętów o przekroju okrągłym.1
T-W-13Zginanie płaskie: wykresy momentów gnących i sił tnących, naprężenia normalne przy zginaniu, równanie różniczkowe linii ugięcia.3
T-W-14Belki statycznie niewyznaczalne; metoda porównywania odkształceń, metoda całkowania równań linii ugięcia.2
T-W-15Elementy analizy stanów naprężenia i odkształcenia. Uogólnione prawo Hooke'a. Pojęcie wytrzymałości złożonej; hipotezy wytężeniowe, obliczenia wytrzymałości złożonej prętów.3
T-W-16Wyboczenie sprężyste i sprężysto-plastyczne pręta.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach30
A-A-2Przygotowanie się do kolokwiów20
50
laboratoria
A-L-1uczestnictwo w zajęciach15
A-L-2opracowywanie wyników pomiarów25
A-L-3przygotowanie się do kolokwiów10
50
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2przygotowanie do zaliczenia formy zajęć18
A-W-3udział w egzaminie2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-2Metody problemowe: wykład problemowy.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Ocena na podstawie wyników egzaminu (wykłady).
S-2Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia audytoryjne).
S-3Ocena formująca: Ocena na podstawie sprawozdań wykonywanych dla każdego zagadnienia tematycznego oraz wyników kolokwium zaliczeniowego (ćwiczenia laboratoryjne).

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
CK_1A_B06_W01
ma wiedzę z zakresu mechaniki niezbędną do analizy układów mechanicznych w zakresie statyki, kinematyki i dynamiki
CK_1A_W06C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7M-1, M-3, M-2S-1, S-2
CK_1A_B06_W02
ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych
CK_1A_W06C-2T-W-10, T-W-14, T-W-16, T-W-9, T-W-12, T-W-13, T-W-11, T-W-15, T-W-8, T-A-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6M-1, M-3, M-2S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
CK_1A_B06_U01
potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów
CK_1A_U01C-2T-W-10, T-W-14, T-W-16, T-W-9, T-W-12, T-W-13, T-W-11, T-W-15, T-W-8M-1, M-2S-2, S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
CK_1A_B06_K01
ma świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymalości konstrukcji
CK_1A_K04C-2T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7, T-W-10, T-W-14, T-W-16, T-W-9, T-W-12, T-W-13, T-W-11, T-W-15, T-W-8, T-A-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6M-1S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
CK_1A_B06_W01
ma wiedzę z zakresu mechaniki niezbędną do analizy układów mechanicznych w zakresie statyki, kinematyki i dynamiki
2,0Student nie ma wiedzy z mechaniki niezbędną do analizy układów mechanicznych w zakresie statyki, kinematyki i dynamiki.
3,0Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do rozwiązania problemów na podstawowym poziomie trudności.
3,5Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do rozwiązania problemów o średnim stopniu trudności.
4,0Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do rozwiązania problemów o zaawansowanym stopniu trudności.
4,5Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do sformułowania i rozwiązania problemów o średnim stopniu trudności.
5,0Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do sformułowania i rozwiązania problemów o zaawansowanym stopniu trudności.
CK_1A_B06_W02
ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych
2,0Student nie ma wiedzy w zakresie analizy wytrzymałości elementów konstrukcyjnych.
3,0Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do rozwiązywania problemów na podstawowym poziomie trudności.
3,5Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do rozwiązywania problemów na średnim poziomie trudności.
4,0Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do rozwiązywania problemów na zaawansowanym poziomie trudności.
4,5Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do sformułowania i rozwiązywania problemów na średnim poziomie trudności.
5,0Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do sformułowania i rozwiązywania problemów na zaawansowanym poziomie trudności.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
CK_1A_B06_U01
potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów
2,0Student nie potrafi zinterpretować informacji o układach mechanicznych i własnościach wytrzymałościowych materiałów.
3,0Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do rozwiązywania problemów na podstawowym poziomie trudności.
3,5Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do rozwiązywania problemów na średnim poziomie trudności.
4,0Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do rozwiązywania problemów na zaawansowanym poziomie trudności.
4,5Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do sformułowania i rozwiązywania problemów na średnim poziomie trudności.
5,0Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do sformułowania i rozwiązywania problemów na zaawansowanym poziomie trudności.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
CK_1A_B06_K01
ma świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymalości konstrukcji
2,0Student nie ma świadomości odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
3,0Student ma podstawową świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
3,5Student ma wyraźną świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
4,0Student ma wyraźną świadomość odpowiedzialności za pracę własną i pewną gotowość podporządkowania się zasadom pracy w zespole, a także ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
4,5Student ma wyraźną świadomość odpowiedzialności za pracę własną i dużą gotowość podporządkowania się zasadom pracy w zespole, a także ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
5,0Student ma wyraźną świadomość odpowiedzialności za pracę własną, dużą gotowość podporządkowania się zasadom pracy w zespole, zdolność do przewodzenia zespołowi, a także ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji

Literatura podstawowa

  1. Leyko J., Mechanika ogólna. T. 1. Statyka i kinematyka, PWN, Warszawa, 2011
  2. Leyko J., Mechanika ogólna. T. 2. Dynamika, PWN, Warszawa, 2011
  3. Wittbrodt E., Sawiak S., Mechanika ogólna : teoria i zadania, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2008
  4. Dyląg Z., Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, WNT, Warszawa, 1996
  5. Niezgodziński M., Niezgodziński T., Wytrzymałość Materiałów, PWN, Warszawa, 1984
  6. Banasiak, M., Grossman, K., Trombski, M., Zbiór zadań z wytrzymałości materiałów, PWN, Warszawa, 1992

Literatura dodatkowa

  1. Giergiel J., Giergiel M., Mechanika ogólna : przykłady, pytania i zadania, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2009
  2. Nizioł J., Metodyka rozwiązywania zadań z mechaniki, WNT, Warszawa, 2007
  3. Jastrzębski, P., Mutermilch, J., Orłowski, W., Wytrzymałość materiałów, Arkady, Warszawa, 1985
  4. Niezgodziński M., Niezgodziński T., Wytrzymałość materiałów, PWN, Warszawa, 1979

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.13
T-A-2Kolokwium nr 11
T-A-3Kolokwium nr 21
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Przeszkolenie BHP - stanowiskowe.1
T-L-2Statyczna próba rozciągania próbek ze stopów metali.2
T-L-3Statyczna próba ściskania próbek ze stopów metali.2
T-L-4Próba udarności stali.2
T-L-5Pomiary odkształceń układów sprężystych.3
T-L-6Próba wytrzymałości zmęczeniowej.3
T-L-7Zaliczenie formy zajęć.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia i definicje stosowane w mechanice. Zasady statyki.1
T-W-2Płaski układ sił zbieżnych, warunki równowagi sił.1
T-W-3Pojecie momentu siły. Płaski dowolny układ sił.1
T-W-4Tarcie poślizgowe i tarcie toczne.1
T-W-5Prędkość i przyspieszenie. Twierdzenie o rzucie prędkości na linie łącząca dwa punkty ciała sztywnego.2
T-W-6Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego, chwilowy środek obrotu. Prędkości i przyspieszenia punktów w ruchu płaskim.2
T-W-7Zasady dynamiki. Dynamiczne równania ruchu punktu. Drgania układów mechanicznych.2
T-W-8Przedmiot i podstawowe pojęcia wytrzymałości materiałów. Doświadczalne podstawy określania własności mechanicznych materiałów.2
T-W-9Proste osiowe rozciąganie i ściskanie, prawo Hooke'a, zasada superpozycji. Układy prętowe statycznie niewyznaczalne.3
T-W-10Ścinanie technologiczne: połączenia sworzniowe, połączenia spawane.2
T-W-11Momenty bezwładności figur płaskich.2
T-W-12Skręcanie prętów o przekroju okrągłym.1
T-W-13Zginanie płaskie: wykresy momentów gnących i sił tnących, naprężenia normalne przy zginaniu, równanie różniczkowe linii ugięcia.3
T-W-14Belki statycznie niewyznaczalne; metoda porównywania odkształceń, metoda całkowania równań linii ugięcia.2
T-W-15Elementy analizy stanów naprężenia i odkształcenia. Uogólnione prawo Hooke'a. Pojęcie wytrzymałości złożonej; hipotezy wytężeniowe, obliczenia wytrzymałości złożonej prętów.3
T-W-16Wyboczenie sprężyste i sprężysto-plastyczne pręta.2
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach30
A-A-2Przygotowanie się do kolokwiów20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach15
A-L-2opracowywanie wyników pomiarów25
A-L-3przygotowanie się do kolokwiów10
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2przygotowanie do zaliczenia formy zajęć18
A-W-3udział w egzaminie2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaCK_1A_B06_W01ma wiedzę z zakresu mechaniki niezbędną do analizy układów mechanicznych w zakresie statyki, kinematyki i dynamiki
Odniesienie do efektów kształcenia dla kierunku studiówCK_1A_W06ma uporządkowaną wiedzę w zakresie mechaniki, elektrotechniki, elektroniki, automatyki
Cel przedmiotuC-1Zapoznanie studentów z podstawami teoretycznymi i metodami rozwiązywania zagadnień z zakresu mechaniki.
Treści programoweT-W-1Podstawowe pojęcia i definicje stosowane w mechanice. Zasady statyki.
T-W-2Płaski układ sił zbieżnych, warunki równowagi sił.
T-W-3Pojecie momentu siły. Płaski dowolny układ sił.
T-W-4Tarcie poślizgowe i tarcie toczne.
T-W-6Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego, chwilowy środek obrotu. Prędkości i przyspieszenia punktów w ruchu płaskim.
T-W-5Prędkość i przyspieszenie. Twierdzenie o rzucie prędkości na linie łącząca dwa punkty ciała sztywnego.
T-W-7Zasady dynamiki. Dynamiczne równania ruchu punktu. Drgania układów mechanicznych.
Metody nauczaniaM-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
M-2Metody problemowe: wykład problemowy.
Sposób ocenyS-1Ocena podsumowująca: Ocena na podstawie wyników egzaminu (wykłady).
S-2Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia audytoryjne).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma wiedzy z mechaniki niezbędną do analizy układów mechanicznych w zakresie statyki, kinematyki i dynamiki.
3,0Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do rozwiązania problemów na podstawowym poziomie trudności.
3,5Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do rozwiązania problemów o średnim stopniu trudności.
4,0Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do rozwiązania problemów o zaawansowanym stopniu trudności.
4,5Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do sformułowania i rozwiązania problemów o średnim stopniu trudności.
5,0Student ma wiedzę z mechaniki w zakresie statyki, kinematyki i dynamiki niezbędną do sformułowania i rozwiązania problemów o zaawansowanym stopniu trudności.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaCK_1A_B06_W02ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych
Odniesienie do efektów kształcenia dla kierunku studiówCK_1A_W06ma uporządkowaną wiedzę w zakresie mechaniki, elektrotechniki, elektroniki, automatyki
Cel przedmiotuC-2Umiejetność oceny wytrzymałości elementów konstrukcyjnych z wykorzystaniem modeli obliczeniowych wytrzymałości materiałów.
Treści programoweT-W-10Ścinanie technologiczne: połączenia sworzniowe, połączenia spawane.
T-W-14Belki statycznie niewyznaczalne; metoda porównywania odkształceń, metoda całkowania równań linii ugięcia.
T-W-16Wyboczenie sprężyste i sprężysto-plastyczne pręta.
T-W-9Proste osiowe rozciąganie i ściskanie, prawo Hooke'a, zasada superpozycji. Układy prętowe statycznie niewyznaczalne.
T-W-12Skręcanie prętów o przekroju okrągłym.
T-W-13Zginanie płaskie: wykresy momentów gnących i sił tnących, naprężenia normalne przy zginaniu, równanie różniczkowe linii ugięcia.
T-W-11Momenty bezwładności figur płaskich.
T-W-15Elementy analizy stanów naprężenia i odkształcenia. Uogólnione prawo Hooke'a. Pojęcie wytrzymałości złożonej; hipotezy wytężeniowe, obliczenia wytrzymałości złożonej prętów.
T-W-8Przedmiot i podstawowe pojęcia wytrzymałości materiałów. Doświadczalne podstawy określania własności mechanicznych materiałów.
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.
T-L-2Statyczna próba rozciągania próbek ze stopów metali.
T-L-3Statyczna próba ściskania próbek ze stopów metali.
T-L-4Próba udarności stali.
T-L-5Pomiary odkształceń układów sprężystych.
T-L-6Próba wytrzymałości zmęczeniowej.
Metody nauczaniaM-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-3Metody praktyczne: pokaz, ćwiczenia przedmiotowe.
M-2Metody problemowe: wykład problemowy.
Sposób ocenyS-1Ocena podsumowująca: Ocena na podstawie wyników egzaminu (wykłady).
S-2Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia audytoryjne).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma wiedzy w zakresie analizy wytrzymałości elementów konstrukcyjnych.
3,0Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do rozwiązywania problemów na podstawowym poziomie trudności.
3,5Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do rozwiązywania problemów na średnim poziomie trudności.
4,0Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do rozwiązywania problemów na zaawansowanym poziomie trudności.
4,5Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do sformułowania i rozwiązywania problemów na średnim poziomie trudności.
5,0Student ma wiedzę w zakresie analizy wytrzymałości elementów konstrukcyjnych wystarczającą do sformułowania i rozwiązywania problemów na zaawansowanym poziomie trudności.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaCK_1A_B06_U01potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów
Odniesienie do efektów kształcenia dla kierunku studiówCK_1A_U01posiada umiejętność wyszukiwania, zrozumienia, analizy i wykorzystywania potrzebnych informacji; potrafi uzyskane informacje analizować, interpretować, wyciągać wnioski oraz formułować i uzasadniać opinie związane z działalnością inżynierską
Cel przedmiotuC-2Umiejetność oceny wytrzymałości elementów konstrukcyjnych z wykorzystaniem modeli obliczeniowych wytrzymałości materiałów.
Treści programoweT-W-10Ścinanie technologiczne: połączenia sworzniowe, połączenia spawane.
T-W-14Belki statycznie niewyznaczalne; metoda porównywania odkształceń, metoda całkowania równań linii ugięcia.
T-W-16Wyboczenie sprężyste i sprężysto-plastyczne pręta.
T-W-9Proste osiowe rozciąganie i ściskanie, prawo Hooke'a, zasada superpozycji. Układy prętowe statycznie niewyznaczalne.
T-W-12Skręcanie prętów o przekroju okrągłym.
T-W-13Zginanie płaskie: wykresy momentów gnących i sił tnących, naprężenia normalne przy zginaniu, równanie różniczkowe linii ugięcia.
T-W-11Momenty bezwładności figur płaskich.
T-W-15Elementy analizy stanów naprężenia i odkształcenia. Uogólnione prawo Hooke'a. Pojęcie wytrzymałości złożonej; hipotezy wytężeniowe, obliczenia wytrzymałości złożonej prętów.
T-W-8Przedmiot i podstawowe pojęcia wytrzymałości materiałów. Doświadczalne podstawy określania własności mechanicznych materiałów.
Metody nauczaniaM-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
M-2Metody problemowe: wykład problemowy.
Sposób ocenyS-2Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia audytoryjne).
S-3Ocena formująca: Ocena na podstawie sprawozdań wykonywanych dla każdego zagadnienia tematycznego oraz wyników kolokwium zaliczeniowego (ćwiczenia laboratoryjne).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi zinterpretować informacji o układach mechanicznych i własnościach wytrzymałościowych materiałów.
3,0Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do rozwiązywania problemów na podstawowym poziomie trudności.
3,5Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do rozwiązywania problemów na średnim poziomie trudności.
4,0Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do rozwiązywania problemów na zaawansowanym poziomie trudności.
4,5Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do sformułowania i rozwiązywania problemów na średnim poziomie trudności.
5,0Student potrafi zinterpretować informacje o układach mechanicznych i własnościach wytrzymałościowych materiałów i wykorzystać je do sformułowania i rozwiązywania problemów na zaawansowanym poziomie trudności.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaCK_1A_B06_K01ma świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymalości konstrukcji
Odniesienie do efektów kształcenia dla kierunku studiówCK_1A_K04ma świadomość ryzyka i potrafi ocenić skutki środowiskowe wykonywanej działalności w zakresie eksploatacji systemów chłodniczych i klimatyzacyjnych
Cel przedmiotuC-2Umiejetność oceny wytrzymałości elementów konstrukcyjnych z wykorzystaniem modeli obliczeniowych wytrzymałości materiałów.
Treści programoweT-W-1Podstawowe pojęcia i definicje stosowane w mechanice. Zasady statyki.
T-W-2Płaski układ sił zbieżnych, warunki równowagi sił.
T-W-3Pojecie momentu siły. Płaski dowolny układ sił.
T-W-4Tarcie poślizgowe i tarcie toczne.
T-W-6Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego, chwilowy środek obrotu. Prędkości i przyspieszenia punktów w ruchu płaskim.
T-W-5Prędkość i przyspieszenie. Twierdzenie o rzucie prędkości na linie łącząca dwa punkty ciała sztywnego.
T-W-7Zasady dynamiki. Dynamiczne równania ruchu punktu. Drgania układów mechanicznych.
T-W-10Ścinanie technologiczne: połączenia sworzniowe, połączenia spawane.
T-W-14Belki statycznie niewyznaczalne; metoda porównywania odkształceń, metoda całkowania równań linii ugięcia.
T-W-16Wyboczenie sprężyste i sprężysto-plastyczne pręta.
T-W-9Proste osiowe rozciąganie i ściskanie, prawo Hooke'a, zasada superpozycji. Układy prętowe statycznie niewyznaczalne.
T-W-12Skręcanie prętów o przekroju okrągłym.
T-W-13Zginanie płaskie: wykresy momentów gnących i sił tnących, naprężenia normalne przy zginaniu, równanie różniczkowe linii ugięcia.
T-W-11Momenty bezwładności figur płaskich.
T-W-15Elementy analizy stanów naprężenia i odkształcenia. Uogólnione prawo Hooke'a. Pojęcie wytrzymałości złożonej; hipotezy wytężeniowe, obliczenia wytrzymałości złożonej prętów.
T-W-8Przedmiot i podstawowe pojęcia wytrzymałości materiałów. Doświadczalne podstawy określania własności mechanicznych materiałów.
T-A-1Przykłady i zadania zgodnie z tematyka prowadzonych wykładów.
T-L-2Statyczna próba rozciągania próbek ze stopów metali.
T-L-3Statyczna próba ściskania próbek ze stopów metali.
T-L-4Próba udarności stali.
T-L-5Pomiary odkształceń układów sprężystych.
T-L-6Próba wytrzymałości zmęczeniowej.
Metody nauczaniaM-1Metody podające: wykład informacyjny, objaśnienie lub wyjaśnienie.
Sposób ocenyS-2Ocena podsumowująca: Ocena na podstawie wyników kolokwiów zaliczeniowych (ćwiczenia audytoryjne).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma świadomości odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
3,0Student ma podstawową świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
3,5Student ma wyraźną świadomość odpowiedzialności za pracę własną i ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
4,0Student ma wyraźną świadomość odpowiedzialności za pracę własną i pewną gotowość podporządkowania się zasadom pracy w zespole, a także ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
4,5Student ma wyraźną świadomość odpowiedzialności za pracę własną i dużą gotowość podporządkowania się zasadom pracy w zespole, a także ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji
5,0Student ma wyraźną świadomość odpowiedzialności za pracę własną, dużą gotowość podporządkowania się zasadom pracy w zespole, zdolność do przewodzenia zespołowi, a także ponoszenia odpowiedzialności w kontekście zapewnienia odpowiedniej wytrzymałości konstrukcji