Wydział Techniki Morskiej i Transportu - Oceanotechnika (S2)
specjalność: Chłodnictwo i klimatyzacja w oceanotechnice
Sylabus przedmiotu Siłownie jądrowe i turbinowe:
Informacje podstawowe
Kierunek studiów | Oceanotechnika | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Siłownie jądrowe i turbinowe | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Inżynierii Bezpieczeństwa i Energetyki | ||
Nauczyciel odpowiedzialny | Ryszard Michalski <Ryszard.Michalski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | 4 | Grupa obieralna | 7 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawowa wiedza z zakresu: termodynamiki, silników cieplnych, wymienników ciepła, pomp, sprężarek i wentylatorów. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Znajomość pracy i budowy reaktorów jądrowych oraz specyfiki obiegów cieplnych siłowni jądrowych. |
C-2 | Umiejętność obliczania obiegów cieplnych siłowni turbinowych, znajomość sposobów poprawy ich sprawności oraz doboru podstawowych urządzeń tych siłowni. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Obliczenia obiegów cieplnych turboparowych. | 15 |
T-A-2 | Obliczenia obiegów cieplnych turbogazowych. | 8 |
T-A-3 | Obliczenia obiegów cieplnych w siłowniach jądrowych. | 5 |
T-A-4 | Zaliczenia ćwiczeń. | 2 |
30 | ||
wykłady | ||
T-W-1 | Zagadnienia fizyczne w reaktorach jądrowych. | 2 |
T-W-2 | Klasyfikacja reaktorów energetycznych. Budowa reaktorów energetycznych. Siłownie z reaktorami wysokotemperaturowymi. | 3 |
T-W-3 | Sprawność energetyczna siłowni jądrowych. Obiegi cieplne siłowni jądrowych. Urządzenia pomocnicze w siłowniach jądrowych. | 3 |
T-W-4 | Paliwa i odpady w siłowniach jądrowych. Zagadnienia bezpieczeństwa. Współczesne tendencje w budowie reaktorów. | 3 |
T-W-5 | Obiegi cieplne siłowni turboparowych. | 2 |
T-W-6 | Obiegi cieplne siłowni turbogazowych. | 2 |
T-W-7 | Obiegi cieplne siłowni kombinowanych. Skojarzona gospodarka energetyczna: kogeneracja i trigeneracja. | 3 |
T-W-8 | Sposoby poprawy sprawności obiegów. | 4 |
T-W-9 | Układy cieplne siłowni turboparowych. | 2 |
T-W-10 | Urządzenia siłowni turboparowych. | 3 |
T-W-11 | Układy cieplne i urządzenia siłowni turbogazowych i kombinowanych. | 3 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestnictwo w zajęciach. | 28 |
A-A-2 | Przygotowanie do zajęć i zaliczeń. | 8 |
A-A-3 | Zaliczenia zajęć. | 2 |
38 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach. | 30 |
A-W-2 | Przygotowanie do egzaminu. | 8 |
38 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Metody podające: wykład informacyjny. |
M-2 | Metody problemowe: wykład problemowy. |
M-3 | Metody praktyczne: ćwiczenia przedmiotowe. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Sprawdzenie umiejętności i kompetencji z zakresu podstaw projektowania siłowni turbinowych. |
S-2 | Ocena podsumowująca: Sprawdzenie wiedzy z zakresu zagadnień omawianych na wykładach. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
O_2A_C06-3_W01 Student zna podstawy pracy reaktorów jądrowych. Zna rodzaje i cechy reaktorów energetcznych. Znane mu są obiegi termodynamiczne oraz sposoby poprawy sprawności obiegów. Znane mu są urządzenia pomocnicze siłowni turbinowych, w tym jądrowych. Znane mu są także podstawowe zagadnienia bezpieczeństwa związane z eksploatacją siiłowni turbinowych ze szczególnym uwzględnieniem siłowni jądrowych. | O_2A_W02, O_2A_W16 | — | — | C-1, C-2 | T-W-6, T-W-7, T-W-1, T-W-5, T-W-9, T-W-4, T-W-11, T-W-10, T-W-3, T-W-8, T-W-2 | M-1, M-2 | S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
O_2A_C06-3_U01 Student potrafi przeprowadzić obliczenia parametrów termodynamicznych obiegów Clausiusa-Rankine'a, Braytona oraz obiegów kombinowanych. Potrafi przy projektowaniu systemu energetycznego uwzględnić zagadnienia ekonomiczne, bezpieczeństwa i ochrony środowiska. | O_2A_U11, O_2A_U20 | — | — | C-2 | T-A-1, T-A-3, T-A-2 | M-3 | S-1 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
O_2A_C06-3_K01 Student ma świadomość wpływu eksploatowanego systemu energetycznego na otoczenie ze szczególnym uwzględnieniem zagadnień bezpieczeństwa. Rozumie konieczność działań zespołowych oraz ciążącej odpowiedzialności za wyniki tych działań. | O_2A_K04, O_2A_K03, O_2A_K02 | — | — | C-2 | T-W-4, T-W-8 | M-3 | S-1 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
O_2A_C06-3_W01 Student zna podstawy pracy reaktorów jądrowych. Zna rodzaje i cechy reaktorów energetcznych. Znane mu są obiegi termodynamiczne oraz sposoby poprawy sprawności obiegów. Znane mu są urządzenia pomocnicze siłowni turbinowych, w tym jądrowych. Znane mu są także podstawowe zagadnienia bezpieczeństwa związane z eksploatacją siiłowni turbinowych ze szczególnym uwzględnieniem siłowni jądrowych. | 2,0 | Student nie wykazuje żadnej wiedzy z zakresu danego przedmiotu. |
3,0 | Student wykazuje elementarną wiedzę z zakresu danego przedmiotu. | |
3,5 | Student wykazuje podstawową wiedzę w wymaganym przez efekt kształcenia zakresie. | |
4,0 | Student wykazuje pełną wiedzę w wymaganym przez efekt kształcenia zakresie. | |
4,5 | Student wykazuje pełną wiedzę w wymaganym przez efekt kształcenia zakresie poszerzoną o uzupełniającą wiedzę literaturową. | |
5,0 | Student wykazuje pełną wiedzę w wymaganym przez efekt ksztalcenia zakresie poszerzoną o uzupełniającą wiedzę literaturową oraz własne przemyślenia. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
O_2A_C06-3_U01 Student potrafi przeprowadzić obliczenia parametrów termodynamicznych obiegów Clausiusa-Rankine'a, Braytona oraz obiegów kombinowanych. Potrafi przy projektowaniu systemu energetycznego uwzględnić zagadnienia ekonomiczne, bezpieczeństwa i ochrony środowiska. | 2,0 | Student nie potrafi w najprostszy sposob zaprezentować umiejętności w wymaganym przez efekt kształcenia zakresie. |
3,0 | Student prezentuje elementarne umiejętności w wymaganym przez efekt kształcenia zakresie. | |
3,5 | Student prezentuje podstawowe umiejętności w wymaganym przez efekt kształcenia zakresie. | |
4,0 | Student prezentuje pełne umiejętności w wymaganym przez efekt kształcenia zakresie. | |
4,5 | Student prezentuje pełne umiejętności w wymaganym przez efekt kształcenia zakresie i wykorzystuje je do prawidłowego rozwiązywania problemów w wymaganym zakresie danego efektu kształcenia. | |
5,0 | Student prezentuje pełne umiejętności w wymaganym przez efekt kształcenia zakresie i wykorzystuje je do prawidłowego rozwiązywania problemów w wymaganym zakresie danego efektu kształcenia, a także proponuje modyfikacje rozwiązań lub/i sposobów rozwiązań. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
O_2A_C06-3_K01 Student ma świadomość wpływu eksploatowanego systemu energetycznego na otoczenie ze szczególnym uwzględnieniem zagadnień bezpieczeństwa. Rozumie konieczność działań zespołowych oraz ciążącej odpowiedzialności za wyniki tych działań. | 2,0 | Student nie ma świadomości wpływu działalności inżynierskiej na otoczenie i środowisko oraz nie rozumie związanej z tym odpowiedzialność za podejmowane decyzje, nie potrafi współpracować i realizować zadania w grupie oraz nie potrafi brać odpowiedzialność za wyniki wspólnych działań. |
3,0 | Student ma elementarną świadomości wpływu działalności inżynierskiej na otoczenie i środowisko oraz rozumie w ograniczonym stopniu związaną z tym odpowiedzialność za podejmowane decyzje, potrafi w stopniu elementarnym współpracować i realizować zadania w grupie oraz potrafi brać odpowiedzialność za wyniki wspólnych działań. | |
3,5 | Student wykazuje kompetencje społeczne w stopniu podstawowym w wymaganym przez efekt kształcenia zakresie. | |
4,0 | Student wykazuje kompetencje społeczne w pełnym stopniu w wymaganym przez efekt kształcenia zakresie. | |
4,5 | Student wykazuje kompetencje społeczne w pełnym stopniu w wymaganym przez efekt kształcenia zakresie, wyraźnie wykazując przedsiębiorczość. | |
5,0 | Student wykazuje pełne kompetencje społeczne w wymaganym przez efekt kształcenia zakresie, wyraźnie wykazując przedsiębiorczość oraz ma pełną świadomość swojej roli. |
Literatura podstawowa
- Chmielniak T. J., Technologie energetyczne, Wydawnictwo Politechniki Śląskiej, Gliwice, 2004
- Laudyn D. i inni., Elektrownie, WNT, Warszawa, 2000
- Michalski R., Okrętowe siłownie turboparowe, Maszynopis powielany, ZUT WTMiT ZSiSO
- Szargut J., Analiza termodynamiczna i ekonomiczna w energetyce przemysłowej, WNT, Warszawa, 1983
- Pihowicz W., Okrętowe siłownie jądrowe z reaktorami wodnociśnieniowymi, Wydawnictwo Morskie, Gdańsk, 1986
- Kubowski J., Nowoczesne elektrownie jądrowe, WNT, Warszawa, 2010
- Skorek J., Kalina J., Gazowe układy kogeneracyjne, WNT, Warszawa, 2005
- Kotowicz J., Elektrownie gazowo-parowe, Kaprint, Lublin, 2008
Literatura dodatkowa
- Szargut J. i inni., Racjonalizacja użytkowania energii w zakładach przemysłowych, Biblioteka Fundacji Poszanowania Energii, Warszawa, 1994
- Jezierski G., Energia jądrowa wczoraj i dziś, WNT, Warszawa, 2005