Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Oceanotechnika (S2)
specjalność: Ship and Offshore Structural Design

Sylabus przedmiotu Integrated Design Project of Ships, Small Crafts and High Speed Vessels:

Informacje podstawowe

Kierunek studiów Oceanotechnika
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Integrated Design Project of Ships, Small Crafts and High Speed Vessels
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Konstrukcji, Mechaniki i Technologii Okrętów
Nauczyciel odpowiedzialny Maciej Taczała <Maciej.Taczala@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 15,0 ECTS (formy) 15,0
Forma zaliczenia egzamin Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP2 40 4,00,20zaliczenie
wykładyW2 70 5,00,40egzamin
laboratoriaL2 100 6,00,40zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Students must have a Bachelor degree in Engineering, with a specialty in civil engineering, mechanical engineering, aerospace engineering, naval architecture, marine or offshore engineering or similar.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1This course will result in a presentation of a comprehensive (integrated) ship project where all the naval architecture problematic is considered.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1The lecture “INTEGRATED DESIGN PROJECT OF SHIPS, SMALL CRAFTS and HIGH SPEED VESSELS” includes initiation to Ship Theory, Ship Structure, Ship propulsion and Ship production. Running an integrated project: Introduction to the role of naval architecture in ship design, definition of the main steps of a project "Ship loop" and the development of the project. General characteristics: definition of the main dimensions (lengths, surfaces, volumes ...), weight estimates and displacement, definition of coefficients in relation to speed and geometrical characteristics of the hull, adjusting dimensions for good seaworthiness and stability. Introduction to Ship Theory (Statics): Ship geometry and hydrostatics: Ship measures (Lpp, …), Form coefficients, Bonjean curves, Methods of integration to define the hydrostatics curves, Center of Gravity (CG) and Principles of transverse stability. Propulsion: Flow Resistance estimation, dimensioning of the propulsion system (engines, propellers, rudder, gearboxes,..). Resistance estimation, practical rules of dimensioning the propulsion system (engines, propellers, rudder, gearboxes,..). On-board energy: electrical overview and organization of the distribution of energy. Protection against corrosion. Insulation (thermic, fire, acoustic). Project coherence and final checks. Ship types and hull forms definition: Displacement, semi-planning and planning hull, multihull, SWATH, SLICE and boats with outriggers. Comparison of pros and cons: resistance, seaworthiness, and performance at sea, maneuverability, and structural resistance. Recommendations for design of multi-hull boats. Introduction to Ship structures: Description of ship structure (transversal, longitudinal and mixed system), ship types (tankers, LNG, containers, passenger ships, multi-hulls ...). Components of ship structure (longitudinal stiffeners, frames, simple hull, double hull, bow and stern, motor zone, ...). Basic structural solid mechanics (bending moment, shear forces, torsion, ..): primary bending (hull girder), secondary components (frames) and tertiary components (plates, stiffeners,...). Design Criterions. Use of CAO (2D, 3D) tools and CAE in ship design. Design software for ship design: Maxsurf, Lunais, Shipconstructor, Argos. Digital simulations and calculations: CFD (Fine Marine), EF: SAMCEF. Virtual reality. Virtual business project. Exchange of technical data. Regulatory approach (classification societies): BV, ABS, Lloyd's, ... Applications complying with the scantling procedures of a classification society. International regulation bodies: IMO, IACS, SOLAS. Classification, monitoring and inspection for maritime and inland navigation vessels. Environment: protection against pollution « MARPOL ». Design of small crafts and high speed vessels: Design principle of small boats and fast boats. Hydrodynamics of semi-planning hulls and planning-hulls: speed coefficients, lift-coefficients,... Definitions of fast boat shapes: developable shape, chine shape, ... Dynamic stability. Types of propulsions: water jet, outboard, Z-drive. Practical design aspects. Towing tank experiments : After completion of his ship design, each group of students will prepare a model (scale) of the designed ship (model of about 1.5 - 2 m) and will test it in the towing tank.40
40
wykłady
T-W-1The lecture “INTEGRATED DESIGN PROJECT OF SHIPS, SMALL CRAFTS and HIGH SPEED VESSELS” includes initiation to Ship Theory, Ship Structure, Ship propulsion and Ship production. Running an integrated project: Introduction to the role of naval architecture in ship design, definition of the main steps of a project "Ship loop" and the development of the project. General characteristics: definition of the main dimensions (lengths, surfaces, volumes ...), weight estimates and displacement, definition of coefficients in relation to speed and geometrical characteristics of the hull, adjusting dimensions for good seaworthiness and stability. Introduction to Ship Theory (Statics): Ship geometry and hydrostatics: Ship measures (Lpp, …), Form coefficients, Bonjean curves, Methods of integration to define the hydrostatics curves, Center of Gravity (CG) and Principles of transverse stability. Propulsion: Flow Resistance estimation, dimensioning of the propulsion system (engines, propellers, rudder, gearboxes,..). Resistance estimation, practical rules of dimensioning the propulsion system (engines, propellers, rudder, gearboxes,..). On-board energy: electrical overview and organization of the distribution of energy. Protection against corrosion. Insulation (thermic, fire, acoustic). Project coherence and final checks. Ship types and hull forms definition: Displacement, semi-planning and planning hull, multihull, SWATH, SLICE and boats with outriggers. Comparison of pros and cons: resistance, seaworthiness, and performance at sea, maneuverability, and structural resistance. Recommendations for design of multi-hull boats. Introduction to Ship structures: Description of ship structure (transversal, longitudinal and mixed system), ship types (tankers, LNG, containers, passenger ships, multi-hulls ...). Components of ship structure (longitudinal stiffeners, frames, simple hull, double hull, bow and stern, motor zone, ...). Basic structural solid mechanics (bending moment, shear forces, torsion, ..): primary bending (hull girder), secondary components (frames) and tertiary components (plates, stiffeners,...). Design Criterions. Use of CAO (2D, 3D) tools and CAE in ship design. Design software for ship design: Maxsurf, Lunais, Shipconstructor, Argos. Digital simulations and calculations: CFD (Fine Marine), EF: SAMCEF. Virtual reality. Virtual business project. Exchange of technical data. Regulatory approach (classification societies): BV, ABS, Lloyd's, ... Applications complying with the scantling procedures of a classification society. International regulation bodies: IMO, IACS, SOLAS. Classification, monitoring and inspection for maritime and inland navigation vessels. Environment: protection against pollution « MARPOL ». Design of small crafts and high speed vessels: Design principle of small boats and fast boats. Hydrodynamics of semi-planning hulls and planning-hulls: speed coefficients, lift-coefficients,... Definitions of fast boat shapes: developable shape, chine shape, ... Dynamic stability. Types of propulsions: water jet, outboard, Z-drive. Practical design aspects. Towing tank experiments : After completion of his ship design, each group of students will prepare a model (scale) of the designed ship (model of about 1.5 - 2 m) and will test it in the towing tank.30
30
laboratoria
0

Metody nauczania / narzędzia dydaktyczne

dla tego przedmiotu nie są określone metody nauczania ani narzędzia dydaktyczne

Sposoby oceny

dla tego przedmiotu nie są określone sposoby oceny

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
O11_2A_D4-16_U01
This course will result in a presentation of a comprehensive (integrated) ship project where all the naval architecture problematic is considered.
O11_2A_U01, O11_2A_U02, O11_2A_U08, O11_2A_U10, O11_2A_U11, O11_2A_U13, O11_2A_U17, O11_2A_U18, O11_2A_U19, O11_2A_U20, O11_2A_U25T2A_U01, T2A_U02, T2A_U08, T2A_U09, T2A_U10, T2A_U11, T2A_U14, T2A_U15, T2A_U16, T2A_U17, T2A_U18, T2A_U19InzA2_U01, InzA2_U02, InzA2_U03, InzA2_U04, InzA2_U05, InzA2_U06, InzA2_U07, InzA2_U08

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1The lecture “INTEGRATED DESIGN PROJECT OF SHIPS, SMALL CRAFTS and HIGH SPEED VESSELS” includes initiation to Ship Theory, Ship Structure, Ship propulsion and Ship production. Running an integrated project: Introduction to the role of naval architecture in ship design, definition of the main steps of a project "Ship loop" and the development of the project. General characteristics: definition of the main dimensions (lengths, surfaces, volumes ...), weight estimates and displacement, definition of coefficients in relation to speed and geometrical characteristics of the hull, adjusting dimensions for good seaworthiness and stability. Introduction to Ship Theory (Statics): Ship geometry and hydrostatics: Ship measures (Lpp, …), Form coefficients, Bonjean curves, Methods of integration to define the hydrostatics curves, Center of Gravity (CG) and Principles of transverse stability. Propulsion: Flow Resistance estimation, dimensioning of the propulsion system (engines, propellers, rudder, gearboxes,..). Resistance estimation, practical rules of dimensioning the propulsion system (engines, propellers, rudder, gearboxes,..). On-board energy: electrical overview and organization of the distribution of energy. Protection against corrosion. Insulation (thermic, fire, acoustic). Project coherence and final checks. Ship types and hull forms definition: Displacement, semi-planning and planning hull, multihull, SWATH, SLICE and boats with outriggers. Comparison of pros and cons: resistance, seaworthiness, and performance at sea, maneuverability, and structural resistance. Recommendations for design of multi-hull boats. Introduction to Ship structures: Description of ship structure (transversal, longitudinal and mixed system), ship types (tankers, LNG, containers, passenger ships, multi-hulls ...). Components of ship structure (longitudinal stiffeners, frames, simple hull, double hull, bow and stern, motor zone, ...). Basic structural solid mechanics (bending moment, shear forces, torsion, ..): primary bending (hull girder), secondary components (frames) and tertiary components (plates, stiffeners,...). Design Criterions. Use of CAO (2D, 3D) tools and CAE in ship design. Design software for ship design: Maxsurf, Lunais, Shipconstructor, Argos. Digital simulations and calculations: CFD (Fine Marine), EF: SAMCEF. Virtual reality. Virtual business project. Exchange of technical data. Regulatory approach (classification societies): BV, ABS, Lloyd's, ... Applications complying with the scantling procedures of a classification society. International regulation bodies: IMO, IACS, SOLAS. Classification, monitoring and inspection for maritime and inland navigation vessels. Environment: protection against pollution « MARPOL ». Design of small crafts and high speed vessels: Design principle of small boats and fast boats. Hydrodynamics of semi-planning hulls and planning-hulls: speed coefficients, lift-coefficients,... Definitions of fast boat shapes: developable shape, chine shape, ... Dynamic stability. Types of propulsions: water jet, outboard, Z-drive. Practical design aspects. Towing tank experiments : After completion of his ship design, each group of students will prepare a model (scale) of the designed ship (model of about 1.5 - 2 m) and will test it in the towing tank.40
40

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1The lecture “INTEGRATED DESIGN PROJECT OF SHIPS, SMALL CRAFTS and HIGH SPEED VESSELS” includes initiation to Ship Theory, Ship Structure, Ship propulsion and Ship production. Running an integrated project: Introduction to the role of naval architecture in ship design, definition of the main steps of a project "Ship loop" and the development of the project. General characteristics: definition of the main dimensions (lengths, surfaces, volumes ...), weight estimates and displacement, definition of coefficients in relation to speed and geometrical characteristics of the hull, adjusting dimensions for good seaworthiness and stability. Introduction to Ship Theory (Statics): Ship geometry and hydrostatics: Ship measures (Lpp, …), Form coefficients, Bonjean curves, Methods of integration to define the hydrostatics curves, Center of Gravity (CG) and Principles of transverse stability. Propulsion: Flow Resistance estimation, dimensioning of the propulsion system (engines, propellers, rudder, gearboxes,..). Resistance estimation, practical rules of dimensioning the propulsion system (engines, propellers, rudder, gearboxes,..). On-board energy: electrical overview and organization of the distribution of energy. Protection against corrosion. Insulation (thermic, fire, acoustic). Project coherence and final checks. Ship types and hull forms definition: Displacement, semi-planning and planning hull, multihull, SWATH, SLICE and boats with outriggers. Comparison of pros and cons: resistance, seaworthiness, and performance at sea, maneuverability, and structural resistance. Recommendations for design of multi-hull boats. Introduction to Ship structures: Description of ship structure (transversal, longitudinal and mixed system), ship types (tankers, LNG, containers, passenger ships, multi-hulls ...). Components of ship structure (longitudinal stiffeners, frames, simple hull, double hull, bow and stern, motor zone, ...). Basic structural solid mechanics (bending moment, shear forces, torsion, ..): primary bending (hull girder), secondary components (frames) and tertiary components (plates, stiffeners,...). Design Criterions. Use of CAO (2D, 3D) tools and CAE in ship design. Design software for ship design: Maxsurf, Lunais, Shipconstructor, Argos. Digital simulations and calculations: CFD (Fine Marine), EF: SAMCEF. Virtual reality. Virtual business project. Exchange of technical data. Regulatory approach (classification societies): BV, ABS, Lloyd's, ... Applications complying with the scantling procedures of a classification society. International regulation bodies: IMO, IACS, SOLAS. Classification, monitoring and inspection for maritime and inland navigation vessels. Environment: protection against pollution « MARPOL ». Design of small crafts and high speed vessels: Design principle of small boats and fast boats. Hydrodynamics of semi-planning hulls and planning-hulls: speed coefficients, lift-coefficients,... Definitions of fast boat shapes: developable shape, chine shape, ... Dynamic stability. Types of propulsions: water jet, outboard, Z-drive. Practical design aspects. Towing tank experiments : After completion of his ship design, each group of students will prepare a model (scale) of the designed ship (model of about 1.5 - 2 m) and will test it in the towing tank.30
30

Treści programowe - laboratoria

KODTreść programowaGodziny
0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaO11_2A_D4-16_U01This course will result in a presentation of a comprehensive (integrated) ship project where all the naval architecture problematic is considered.
Odniesienie do efektów kształcenia dla kierunku studiówO11_2A_U01potrafi pozyskiwać informacje z literatury, baz danych, przepisów, norm oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie oceanotechniki potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągać wnioski oraz formułować i wyczerpująco uzasadniać opinie
O11_2A_U02potrafi pracować indywidualnie i w zespole; potrafi ocenić pracochłonność zadania oraz zapewnić jego realizację w założonym terminie; potrafi porozumiewać się w środowisku zawodowym i innym z wykorzystaniem różnych technik
O11_2A_U08potrafi opracować specyfikację projektową elementu, układu, systemu, procesu, maszyny czy obiektu oceanotechnicznego z uwzględnieniem wszelkich aspektów pozatechnicznych, takich jak np. wpływ na środowisko naturalne, zgodność z przepisami prawa czy opłacalność inwestycji
O11_2A_U10potrafi – przy formułowaniu i rozwiązywaniu zadań inżynierskich i prostych problemów badawczych – dokonać oceny i zastosować odpowiednie metody analityczne, symulacyjne i eksperymentalne z zastosowaniem podejścia systemowego, jak również formułować i testować hipotezy związane m.in. z modelowaniem i projektowaniem elementów, układów, systemów, procesów, maszyn czy obiektów oceanotechnicznych
O11_2A_U11potrafi – przy formułowaniu i rozwiązywaniu zadań inżynierskich i prostych problemów badawczych – wykorzystywać i integrować wiedzę pochodzącą z różnych źródeł, zarówno z zakresu oceanotechniki, jak i innych dziedzin nauki i techniki, uwzględniając aspekty pozatechniczne (np. prawne czy ekonomiczne)
O11_2A_U13potrafi dokonać analizy budowy i funkcjonowania istniejących rozwiązań technicznych obiektów oceanotechnicznych oraz ich elementów, jak również zaproponować możliwości ich ulepszenia lub modyfikacji
O11_2A_U17potrafi określić parametry eksploatacyjne jednostek pływających oraz dokonać oceny zachowania się obiektów pływających w określonych warunkach zewnętrznych, jak i wpływu otoczenia na obiekty oceanotechniczne
O11_2A_U18potrafi zaprojektować procesy produkcyjne oraz procesy technologiczne obiektów oceanotechnicznych z uwzględnieniem aspektów pozatechnicznych
O11_2A_U19potrafi dokonać obliczeń wytrzymałościowych elementów konstrukcyjnych obiektów oceanotechnicznych według przepisów i procedur obliczeniowych
O11_2A_U20potrafi zaprojektować urządzenia i systemy energetyczne obiektów oceanotechnicznych z uwzględnieniem aspektów pozatechnicznych
O11_2A_U25potrafi zaprojektować złożony element, układ, system, proces, urządzenie czy obiekt oceanotechniczny z uwzględnieniem zadanej specyfikacji i aspektów pozatechnicznych oraz w dostępny sposób zrealizować ten projekt – co najmniej w części – wykorzystując właściwe metody, techniki i narzędzia, w tym przystosowując do tego celu istniejące lub opracowując nowe narzędzia
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągać wnioski oraz formułować i wyczerpująco uzasadniać opinie
T2A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów
T2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
T2A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - integrować wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne
T2A_U11potrafi formułować i testować hipotezy związane z problemami inżynierskimi i prostymi problemami badawczymi
T2A_U14potrafi dokonać wstępnej analizy ekonomicznej podejmowanych działali inżynierskich
T2A_U15potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T2A_U16potrafi zaproponować ulepszenia (usprawnienia) istniejących rozwiązań technicznych
T2A_U17potrafi dokonać identyfikacji i sformułować specyfikację złożonych zadań inżynierskich, charakterystycznych dla studiowanego kierunku studiów, w tym zadań nietypowych, uwzględniając ich aspekty pozatechniczne
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
T2A_U19potrafi - zgodnie z zadaną specyfikacją, uwzględniającą aspekty pozatechniczne - zaprojektować złożone urządzenie, obiekt, system lub proces, związane z zakresem studiowanego kierunku studiów, oraz zrealizować ten projekt - co najmniej w części - używając właściwych metod, technik i narzędzi, w tym przystosowując do tego celu istniejące lub opracowując nowe narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA2_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA2_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
InzA2_U04potrafi dokonać wstępnej analizy ekonomicznej podejmowanych działań inżynierskich
InzA2_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA2_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA2_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA2_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi