Wydział Techniki Morskiej i Transportu - Transport (S2)
Sylabus przedmiotu Wybrane działy matematyki stosowanej:
Informacje podstawowe
Kierunek studiów | Transport | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Wybrane działy matematyki stosowanej | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Konstrukcji, Mechaniki i Technologii Okrętów | ||
Nauczyciel odpowiedzialny | Remigiusz Iwańkowicz <Remigiusz.Iwankowicz@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawy algebry i analizy matematycznej. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Przekazanie studentom wiedzy na temat matematycznych metod przydatnych w modelowaniu i optymalizacji zjawisk rzeczywistych. Rozwinięcie u studentów umiejętności rozwiązywania teoretycznych zadań z zakresu wprowadzonych metod. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Rozwiązywanie zadań tematycznie odpowiadających aktualnemu wykładowi. | 13 |
T-A-2 | Kolokwium 1. | 1 |
T-A-3 | Kolokwium 2. | 1 |
15 | ||
wykłady | ||
T-W-1 | Zastosowania algebry liniowej w modelowaniu obiektów rzeczywistych. Przestrzenie wektorowe, operatory liniowe. | 4 |
T-W-2 | Przestrzenie metryczne, miary odległości niemetryczne, analiza klastrowa zbiorów. | 4 |
T-W-3 | Elementy matematyki dyskretnej - techniki zliczania, metody dwymianowe, zasada Dirichleta. | 3 |
T-W-4 | Podstawy teorii grafów, grafy skierowane, z wagami, minimalne drzewa rozpinające. | 3 |
T-W-5 | Zaliczenie pisemne. | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestnictwo w zajęciach | 15 |
A-A-2 | Praca własna studenta. | 10 |
25 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach. | 15 |
A-W-2 | Praca własna studenta. | 10 |
25 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny. |
M-2 | Ćwiczenia przedmiotowe. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Dwa kolkwia pisemne podczas ćwiczeń. |
S-2 | Ocena formująca: Ocena aktywności studenta podczas ćwiczeń. |
S-3 | Ocena podsumowująca: Zaliczenie pisemne wykładów. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
TR_2A_B01_W01 Student posiada wiedzę na temat matematycznych metod przydatnych w modelowaniu i optymalizacji zjawisk rzeczywistych występujących w procesach transportu. | TR_2A_W01 | — | — | C-1 | T-W-1, T-W-3, T-W-2, T-W-4 | M-1 | S-3 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
TR_2A_B01_U01 Student potrafi dobrać właściwą metodę analityczną do postawionego zadania inżynierskiego, wykonać obliczenia i zinterpretować wyniki. | TR_2A_U16, TR_2A_U10 | — | — | C-1 | T-A-1 | M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
TR_2A_B01_W01 Student posiada wiedzę na temat matematycznych metod przydatnych w modelowaniu i optymalizacji zjawisk rzeczywistych występujących w procesach transportu. | 2,0 | Student nie zna podstawowych pojęć. |
3,0 | Student rozumie pojęcia i rozwiązuje problemy o podstawowym stopniu trudności. | |
3,5 | Student rozumie pojęcia i rozwiązuje problemy o średnim stopniu trudności. | |
4,0 | Student rozumie pojęcia i rozwiązuje problemy o zawansowanym stopniu trudności. | |
4,5 | Student interpretuje i uogólnia problemy o podstawowym stopniu trudności. | |
5,0 | Student interpretuje i uogólnia problemy o średnim stopniu trudności. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
TR_2A_B01_U01 Student potrafi dobrać właściwą metodę analityczną do postawionego zadania inżynierskiego, wykonać obliczenia i zinterpretować wyniki. | 2,0 | Student nie zna podstawowych pojęć. |
3,0 | Student rozumie pojęcia i rozwiązuje problemy o podstawowym stopniu trudności. | |
3,5 | Student rozumie pojęcia i rozwiązuje problemy o średnim stopniu trudności. | |
4,0 | Student rozumie pojęcia i rozwiązuje problemy o zawansowanym stopniu trudności. | |
4,5 | Student interpretuje i uogólnia problemy o podstawowym stopniu trudności. | |
5,0 | Student interpretuje i uogólnia problemy o średnim stopniu trudności. |
Literatura podstawowa
- Allen R.D.G., Ekonomia matematyczna, PWN, Warszawa, 1961
- Jefimow N.W., Rozendorn E.R., Algebra liniowa wraz z geometrią wielowymiarową, PWN, Warszawa, 1974
- Kryński H.E., Matematyka dla ekonomistów, PWN, Warszawa, 1971, 5
- Pawłowski O., Brewka M., Majewski W., Siatki czynności i ich analiza, Wydawnictwo Morskie, Gdynia, 1967
- Ross K.A., Wright C.R.B., Matematyka dyskretna, PWN, Warszawa, 2008, 5
- Sobczak W., Malina W., Metody selekcji i redukcji i informacji, WNT, Warszawa, 1985
- Trajdos-Wróbel T., Matematyka dla inżynierów, WNT, Warszawa, 1965
- Wowk C., Algebra liniowa w problemach i zadaniach, Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, Szczecin, 1993
Literatura dodatkowa
- Bertalanffy L., Ogólna teoria systemów, PWN, Warszawa, 1984
- Lem S., Summa technologiae, Wydawnictwo Lubelskie, Lublin, 1984, 4