Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | Nano_2A_D1-04_U01 | Student potrafi dokonać doboru metod analitycznych i aparatury, zastosować specjalistyczne metody i procedury pomiarowe oraz określić zakres stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | Nano_2A_U07 | potrafi zastosować specjalistyczne metody i procedury pomiarowe z zakresu technologii chemicznej, fizyki i nanotechnologii, aby zaplanować złożony eksperyment laboratoryjny oraz potrafi interpretować uzyskane wyniki i wyciągać wnioski |
---|
Nano_2A_U08 | potrafi dokonać doboru metod analitycznych i aparatury właściwych dla przeprowadzenia badań laboratoryjnych poprzez integrację zdobytej wiedzy |
Nano_2A_U12 | potrafi określić zakres stosowalności poznanych metod badawczych i technologii oraz nowych rozwiązań w warunkach przemysłowych |
Nano_2A_U14 | posiada umiejętność doboru reakcji chemicznych, technik laboratoryjnych i rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności o zróżnicowanym stopniu trudności |
Cel przedmiotu | C-1 | Celem przedmiotu jest zapoznanie Studenta z zagadnieniami z zakresu działania, konstrukcji i wykorzystania sensorów chemicznych i biosensorów w nanotechnologii. |
---|
Treści programowe | T-W-1 | Definicja sensora chemicznego i biosensora. Typy sensorów chemicznych. Podział biosensorów ze względu na ogólną zasadę działania. Podział chemosensorów i biosensorów ze względu na rodzaj używanego czujnika (elektrochemiczne, pół-przewodnikowe, optyczne, piezoelektryczne, entalpimetryczne i inne).Sensory elektrochemiczne - potencjometryczne, amperometryczne, kulometryczne, konduktometryczne. Elektrody jonoselektywne (budowa, typy i zastosowania). Amperometryczne elektrody tlenowe.Sensory półprzewodnikowe. |
---|
T-W-2 | Budowa i zasada działania tranzystorów polowych. Tranzystory polowe z bramką sterowaną sygnałem chemicznym: jonoselektywne, czułe na wodór i amoniak. BIOSFET - tranzystory polowe z bramką sterowaną działaniem materiału biologicznego. Rezystory półprzewodnikowe. Czujniki pojemnościowe. Adresowane światłem sensory potencjometryczne. |
T-W-4 | Omówienie materiału biologicznego stosowanego do konstrukcji biosensorów: enzymy, tkanki, organelle komórkowe (mitochondria, chloroplasty), mikroorganizmy (bakterie, drożdże, algi jednokomórkowe), organizmy wyższe i ich organy (np. owady i ich czułki), przeciwciała, kwasy nukleinowe (DNA), inne związki biologicznie czynne (hemoglobina, lektyny roślinne). Organizmy wskaźnikowe jako biosensory. Sposoby immobilizacji materiału biologicznego na biosensorach: adsorpcja, sieciowanie, pułapkowanie w żelach polimerowych, wiązanie kowalencyjne, mikrokapsułkowanie. |
T-W-5 | Rozwój amperometrycznych elektrod enzymatycznych na przykładzie najczęściej używanej elektrody do oznaczania glukozy. Elektrody pierwszej, drugiej, trzeciej generacji. Parametry operacyjne sensorów: zakres pomiarowy, czułość, selektywność, czas życia operacyjny i podczas przechowywania. |
T-W-6 | Metody pomiarowe: oparte na krzywej kalibracyjnej i metoda wewnętrznego wzorca. Użycie sensorów w przepływowej analizie wstrzykowej (FIA). Zastosowania chemo- i biosensorów: medycyna,kontrola produkcji i analiza żywności, kontrola procesów biotechnologicznych, ochrona środowiska, bezpieczeństwo zewnętrzne i wewnętrzne, medycyna sportowa, badania naukowe. Komercjalizacja.Sensory biomimetyczne: sztuczny nos, sztuczny język, imprinting.Perspektywy: dalsza miniaturyzacja biosensorów, łączenie materiału biologicznego i półprzewodników w jeden biochip, łączenie wielu funkcji w jednym, złożonym sensorze, komercjalizacja nowych biosensorów, obniżka kosztów. |
T-W-3 | Podstawy fizyczne metod optycznych: absorpcja promieniowania, fluorescencja, chemi-luminescencja, elektrochemiluminescencja, bioluminescencja. Czujniki optyczne do oznaczania pH, tlenu, jonów metali. Światłowody, konstrukcja, zasada działania. Wykorzystanie światłowodów w chemo- i biosensorach. Zjawisko fali zanikającej i jego zastosowanie w biosensorach optycznych. Elektronowy rezonans plazmowy (SPR). Lustro rezonansowe. Zjawisko piezoelektryczne. Zastosowanie kryształu piezoelektrycznego jako czujnika masowego (mikrowaga kwarcowa). Czujniki wykorzystujące fale akustyczne w kryształach piezoelektrycznych. Wykorzystanie ciepła reakcji do konstrukcji sensorów entalpimetrycznych. Termistory. |
Metody nauczania | M-1 | Wykład wspomagany prezentacją multimedialną. |
---|
Sposób oceny | S-1 | Ocena podsumowująca: Egzamin pisemny obejmujacy zagadnienia omawiane na wykładzie. |
---|
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie potrafi lub potrafi w stopniu niewystarczającym dokonać doboru metod analitycznych i aparatury, zastosować specjalistycznych metod i procedur pomiarowych oraz określić zakresu stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. |
3,0 | Student potrafi w stopniu dostatecznym dokonać doboru metod analitycznych i aparatury, zastosować specjalistyczne metody i procedury pomiarowe oraz określić zakres stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. Umiejętności zdobyte przez Studenta wynoszą 60 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
3,5 | Student potrafi w stopniu większym, niż dostateczny dokonać doboru metod analitycznych i aparatury, zastosować specjalistyczne metody i procedury pomiarowe oraz określić zakres stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. Umiejętności zdobyte przez Studenta wynoszą 70 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
4,0 | Student potrafi w stopniu dobrym dokonać doboru metod analitycznych i aparatury, zastosować specjalistyczne metody i procedury pomiarowe oraz określić zakres stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. Umiejętności zdobyte przez Studenta wynoszą 80 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
4,5 | Student potrafi w stopniu większym, niż dobry dokonać doboru metod analitycznych i aparatury, zastosować specjalistyczne metody i procedury pomiarowe oraz określić zakres stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. Umiejętności zdobyte przez Studenta wynoszą 90 % umiejętności możliwych do uzyskania w ramach przedmiotu. |
5,0 | Student w pełni potrafi dokonać doboru metod analitycznych i aparatury, zastosować specjalistyczne metody i procedury pomiarowe oraz określić zakres stosowalności poznanych metod badawczych w zakresie działania, konstrukcji i wykorzystania chemosensorów i biosensorów w nanotechnologii. Umiejętności zdobyte przez Studenta wynoszą 80 % umiejętności możliwych do uzyskania w ramach przedmiotu. |