Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Architektury - Civil Engineering (S2)
specjalność: International Construction Management

Sylabus przedmiotu Mathematics:

Informacje podstawowe

Kierunek studiów Civil Engineering
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Mathematics
Specjalność przedmiot wspólny
Jednostka prowadząca Studium Matematyki
Nauczyciel odpowiedzialny Adam Bohonos <Adam.Bohonos@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 15 1,00,50zaliczenie
ćwiczenia audytoryjneA1 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of selected topics of higher mathematics from the courses Mathematics-1 and Mathematics-2 from the 1-st degree studies at Construction and Architecture Faculty

Cele przedmiotu

KODCel modułu/przedmiotu
C-1To give the students an extended and deepened knowledge of higher mathematics
C-2To teach the students methods and computational algorithms used in engineering
C-3To educate the students about the necessity of whole life learning and responsibility for a reliable work

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.2
T-A-2Solving ordinary differential equations of higher orders3
T-A-3Solving partial differential equations of the second order using canonical form4
T-A-4Expansion of a periodic function into Fourier series4
T-A-5Test2
15
wykłady
T-W-1Ordinary differential equations of higher order3
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.4
T-W-3Function series: power series and Fourier series of a periodic function4
T-W-4Fourier transform2
T-W-5Test2
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Taking part in exercises, solving of exercises and analyzing problems under supervision of a teacher13
A-A-2Self study by solving exercises and analyzing problems5
A-A-3Test preparration10
A-A-4Test2
30
wykłady
A-W-1Taking part in lectures and making notes13
A-W-2Independent reading of lecture notes and studying literature7
A-W-3Exam praparation8
A-W-4Exam2
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Valuation of students activity during lectures and exercises
S-2Ocena podsumowująca: Exercises - a test of computational exercises
S-3Ocena podsumowująca: Exercises - a test of thoretical questions

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/B/01-1_W01
The student knows the basic definitions, theorems, examples and computational methods of selected topics of higher mathematics
B-A_2A_W01C-2, C-1T-W-3, T-W-4, T-W-1, T-W-2, T-W-5M-1, M-2S-2, S-3, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/B/01-1_U01
The student is able to solve mathematical problems appearing in engineering praxis correctly and precisely
B-A_2A_U01, B-A_2A_U10C-2, C-1T-A-4, T-A-5, T-A-1, T-A-2, T-A-3M-1, M-2S-2, S-3, S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/B/01-1_K01
The student is aware of necessity of the whole life learning and responsibility for a reliable work
B-A_2A_K02C-3T-W-3, T-W-4, T-W-1, T-W-2, T-W-5, T-A-4, T-A-5, T-A-1, T-A-2, T-A-3M-1, M-2S-2, S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
B-A_2A_A/B/01-1_W01
The student knows the basic definitions, theorems, examples and computational methods of selected topics of higher mathematics
2,0
3,0The student knows the basic definitions, theorems and methods of higher mathematics (selected topics)
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
B-A_2A_A/B/01-1_U01
The student is able to solve mathematical problems appearing in engineering praxis correctly and precisely
2,0
3,0The student can solve typical simple exercises of higher mathematics in selected topics
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
B-A_2A_A/B/01-1_K01
The student is aware of necessity of the whole life learning and responsibility for a reliable work
2,0
3,0The student takes part in lectures and exercises. They work on their own right.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Tyn Myint-U, Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, Birkhauser, 4
  2. K. Weltner, J. Grosjean, W. J. Weber, P. Schuster, Mathematics for Physicists and Engineers, Springer, 2009

Literatura dodatkowa

  1. Donald A.McQuarrie, Mathematical Methods for Scientists and Engineers, Univ Science Books, 2003
  2. Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers part 2, Univ Science Books, 2003

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.2
T-A-2Solving ordinary differential equations of higher orders3
T-A-3Solving partial differential equations of the second order using canonical form4
T-A-4Expansion of a periodic function into Fourier series4
T-A-5Test2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Ordinary differential equations of higher order3
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.4
T-W-3Function series: power series and Fourier series of a periodic function4
T-W-4Fourier transform2
T-W-5Test2
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Taking part in exercises, solving of exercises and analyzing problems under supervision of a teacher13
A-A-2Self study by solving exercises and analyzing problems5
A-A-3Test preparration10
A-A-4Test2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Taking part in lectures and making notes13
A-W-2Independent reading of lecture notes and studying literature7
A-W-3Exam praparation8
A-W-4Exam2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB-A_2A_A/B/01-1_W01The student knows the basic definitions, theorems, examples and computational methods of selected topics of higher mathematics
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_W01Has advanced and in-depth knowledge within the scope of mathematics and other areas of science useful for formulating and solving complex tasks within the scope of civil engineering
Cel przedmiotuC-2To teach the students methods and computational algorithms used in engineering
C-1To give the students an extended and deepened knowledge of higher mathematics
Treści programoweT-W-3Function series: power series and Fourier series of a periodic function
T-W-4Fourier transform
T-W-1Ordinary differential equations of higher order
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.
T-W-5Test
Metody nauczaniaM-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture
Sposób ocenyS-2Ocena podsumowująca: Exercises - a test of computational exercises
S-3Ocena podsumowująca: Exercises - a test of thoretical questions
S-1Ocena formująca: Valuation of students activity during lectures and exercises
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student knows the basic definitions, theorems and methods of higher mathematics (selected topics)
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB-A_2A_A/B/01-1_U01The student is able to solve mathematical problems appearing in engineering praxis correctly and precisely
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_U01Is able to obtain information from literature, data bases and other properly selected sources, also in a foreign language; is able to integrate the obtained information, interpret it and evaluate it critically as well as draw conclusions, formulate and sufficiently justify opinions
B-A_2A_U10Is able to use analytic, simulation and experimental methods to formulate and solve engineering tasks as well as simple research problems
Cel przedmiotuC-2To teach the students methods and computational algorithms used in engineering
C-1To give the students an extended and deepened knowledge of higher mathematics
Treści programoweT-A-4Expansion of a periodic function into Fourier series
T-A-5Test
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.
T-A-2Solving ordinary differential equations of higher orders
T-A-3Solving partial differential equations of the second order using canonical form
Metody nauczaniaM-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture
Sposób ocenyS-2Ocena podsumowująca: Exercises - a test of computational exercises
S-3Ocena podsumowująca: Exercises - a test of thoretical questions
S-1Ocena formująca: Valuation of students activity during lectures and exercises
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student can solve typical simple exercises of higher mathematics in selected topics
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaB-A_2A_A/B/01-1_K01The student is aware of necessity of the whole life learning and responsibility for a reliable work
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_K02Is responsible for reliability of the obtained results of his/her work and evaluation of the work of a team of subordinates.
Cel przedmiotuC-3To educate the students about the necessity of whole life learning and responsibility for a reliable work
Treści programoweT-W-3Function series: power series and Fourier series of a periodic function
T-W-4Fourier transform
T-W-1Ordinary differential equations of higher order
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.
T-W-5Test
T-A-4Expansion of a periodic function into Fourier series
T-A-5Test
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.
T-A-2Solving ordinary differential equations of higher orders
T-A-3Solving partial differential equations of the second order using canonical form
Metody nauczaniaM-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture
Sposób ocenyS-2Ocena podsumowująca: Exercises - a test of computational exercises
S-1Ocena formująca: Valuation of students activity during lectures and exercises
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student takes part in lectures and exercises. They work on their own right.
3,5
4,0
4,5
5,0