Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N2)
specjalność: grafika komputerowa i systemy multimedialne

Sylabus przedmiotu Badania operacyjne - Przedmiot obieralny I:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauki techniczne
Profil ogólnoakademicki
Moduł
Przedmiot Badania operacyjne - Przedmiot obieralny I
Specjalność inteligentne aplikacje komputerowe
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Joanna Banaś <Joanna.Banas@zut.edu.pl>
Inni nauczyciele Małgorzata Machowska-Szewczyk <Malgorzata.Machowska.Szewczyk@zut.edu.pl>
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 17 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL3 10 0,70,50zaliczenie
wykładyW3 10 1,30,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Elementy analizy matematycznej
W-2Algebra liniowa

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z wybranymi metodami optymalizacji i przykładami ich zastosowań
C-2Kształtowanie umiejętności rozpoznania sytuacji decyzyjnej i właściwego doboru modelu optymalizacyjnego, poszukiwania rozwiązań optymalnych oraz interpretacji otrzymanych wyników i ewentualnej interakcji z decydentem

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Rozwiązywanie zadań optymalizacyjnych za pomocą programu PROTASS2, dotyczących: programowania liniowego (PL) metodą SIMPLEKS, programowania w liczbach całkowitych, problemów przydziału oraz zagadnienia trensportowego, WPL za pomocą programowania celowego, metody STEM.10
10
wykłady
T-W-1Elementy programowania liniowego (PL): postać kanoniczna i standardowa zadania PL, metoda graficzna rozwiązania zadania PL, algorytm simleks3
T-W-2Programowanie w liczbach całkowitych2
T-W-3Zagadnienie transportowe i problemy przydziału2
T-W-4Wielokryterialne programowanie liniowe (WPL): programowanie celowe, metoda STEM, programowanie ilorazowe.3
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach laboratoryjnych8
A-L-2Przygotowanie się do zajęć2
A-L-3Przygotowanie się do kolokwium7
A-L-4Zaliczenie2
19
wykłady
A-W-1Uczestnictwo w wykładach8
A-W-2Czytanie literatury8
A-W-3Przygotowanie się do zaliczenia16
A-W-4Zaliczenie2
34

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład multimedialny z szeregiem przykładów zastosowania przedstawianej treści
M-2Wykład problemowy oparty na interakcji ze studentami
M-3Ćwiczenia laboratoryjne polegają na grupowym lub indywidualnym budowaniu modeli optymalizacyjnych dla różnych sytuacji decyzyjnych, poszukiwaniu rozwiązań optymalnych z wykorzystaniem oprogramowania oraz interpretacji otrzymanych rozwiązań.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Kolokwium sprawdzające umiejętność budowania właściwych modeli programowania matematycznego do różnych sytacji decyzyjnych oraz posługiwania się dostępnym oprogramowaniem do wspomagania modelowania i rozwiązywania problemów optymalizacyjnych
S-2Ocena podsumowująca: Zaliczenie wykładu na postawie testu jednokrotnego wyboru, sprawdzającego przyswojenie podstawowych pojęć oraz zastosowania ich w konkretnych zagadnieniach problemowych.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D19/O/1-2_W01
Student ma wiedzę w zakresie podstawowych metod poszukiwania rozwiązań optymalnych zadań programowania matematycznego
I_2A_W01C-1T-W-1, T-W-2, T-W-3, T-W-4M-1, M-2S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D19/O/1-2_U01
Student potrafi samodzielnie rozpoznać rodzaj sytuacji decyzyjnej i dobrać odpowiedni model matematyczny, wyznaczyć zmienne decyzyjne i dokonać identyfikacji współczynników modelu na podstawie danych, wykorzystać narzędzia komputerowe do i rozwiązywania problemów optymalizacyjnych oraz dokonać interpretacji otrzymanych wyników.
I_2A_U04, I_2A_U05, I_2A_U10C-2T-L-1M-3S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D19/O/1-2_K01
Student rozumie potrzebę komunikacji i współpracy z zewnętrznym środowiskiem przy tworzeniu systemu wspomagania decyzji
I_2A_K02C-2T-L-1M-3S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_2A_D19/O/1-2_W01
Student ma wiedzę w zakresie podstawowych metod poszukiwania rozwiązań optymalnych zadań programowania matematycznego
2,0
3,0Student zna podstawowe pojęcia z obszaru badań operacyjnych, potrafi zdefiniować wiele omawianych zadania programowania matematycznego oraz wyjaśnić niektóre omawiane metody rozwiązywania zadań jednokryterialnych.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_2A_D19/O/1-2_U01
Student potrafi samodzielnie rozpoznać rodzaj sytuacji decyzyjnej i dobrać odpowiedni model matematyczny, wyznaczyć zmienne decyzyjne i dokonać identyfikacji współczynników modelu na podstawie danych, wykorzystać narzędzia komputerowe do i rozwiązywania problemów optymalizacyjnych oraz dokonać interpretacji otrzymanych wyników.
2,0
3,0Student potrafi wykorzystać wskazane przez nauczyciela metody i narzędzia informatyczne do rozwiązywania problemów decyzyjnych jednokryterialnych, ułożyć odpowiedni model matematyczny, znaleźć jego rozwiązanie.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
I_2A_D19/O/1-2_K01
Student rozumie potrzebę komunikacji i współpracy z zewnętrznym środowiskiem przy tworzeniu systemu wspomagania decyzji
2,0
3,0Przygotowuje się do poszczególnych zajęć i wykazuje zaangażowanie w trakcie zajęć.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Galas Z., Nykowski I., Żółkiewski Z., Programowanie wielokryterialne, PWE, Warszawa, 1987
  2. Galas Z., Nykowski I. (red.), Zbiór zadań z programowania matematycznego, cz. I i II, PWE, Warszawa, 1988
  3. Jędrzejczyk Z., Kukuła K., Skrzypek J., Walkosz A., Badania operacyjne w przykładach i zadaniach, PWN, Warszawa, 2004

Literatura dodatkowa

  1. Trzaskalik T., Wprowadzenie do badań operacyjnych komputerem, PWE, Warszawa, 2003

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Rozwiązywanie zadań optymalizacyjnych za pomocą programu PROTASS2, dotyczących: programowania liniowego (PL) metodą SIMPLEKS, programowania w liczbach całkowitych, problemów przydziału oraz zagadnienia trensportowego, WPL za pomocą programowania celowego, metody STEM.10
10

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Elementy programowania liniowego (PL): postać kanoniczna i standardowa zadania PL, metoda graficzna rozwiązania zadania PL, algorytm simleks3
T-W-2Programowanie w liczbach całkowitych2
T-W-3Zagadnienie transportowe i problemy przydziału2
T-W-4Wielokryterialne programowanie liniowe (WPL): programowanie celowe, metoda STEM, programowanie ilorazowe.3
10

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach laboratoryjnych8
A-L-2Przygotowanie się do zajęć2
A-L-3Przygotowanie się do kolokwium7
A-L-4Zaliczenie2
19
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach8
A-W-2Czytanie literatury8
A-W-3Przygotowanie się do zaliczenia16
A-W-4Zaliczenie2
34
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D19/O/1-2_W01Student ma wiedzę w zakresie podstawowych metod poszukiwania rozwiązań optymalnych zadań programowania matematycznego
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W01Ma poszerzoną i pogłębioną wiedzę w zakresie wybranych działów matematyki teoretycznej oraz matematyki stosowanej
Cel przedmiotuC-1Zapoznanie studentów z wybranymi metodami optymalizacji i przykładami ich zastosowań
Treści programoweT-W-1Elementy programowania liniowego (PL): postać kanoniczna i standardowa zadania PL, metoda graficzna rozwiązania zadania PL, algorytm simleks
T-W-2Programowanie w liczbach całkowitych
T-W-3Zagadnienie transportowe i problemy przydziału
T-W-4Wielokryterialne programowanie liniowe (WPL): programowanie celowe, metoda STEM, programowanie ilorazowe.
Metody nauczaniaM-1Wykład multimedialny z szeregiem przykładów zastosowania przedstawianej treści
M-2Wykład problemowy oparty na interakcji ze studentami
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie wykładu na postawie testu jednokrotnego wyboru, sprawdzającego przyswojenie podstawowych pojęć oraz zastosowania ich w konkretnych zagadnieniach problemowych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student zna podstawowe pojęcia z obszaru badań operacyjnych, potrafi zdefiniować wiele omawianych zadania programowania matematycznego oraz wyjaśnić niektóre omawiane metody rozwiązywania zadań jednokryterialnych.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D19/O/1-2_U01Student potrafi samodzielnie rozpoznać rodzaj sytuacji decyzyjnej i dobrać odpowiedni model matematyczny, wyznaczyć zmienne decyzyjne i dokonać identyfikacji współczynników modelu na podstawie danych, wykorzystać narzędzia komputerowe do i rozwiązywania problemów optymalizacyjnych oraz dokonać interpretacji otrzymanych wyników.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_U04Potrafi wybrać, krytycznie ocenić przydatność i zastosować metodę i narzędzia rozwiązania złożonego zadania inżynierskiego
I_2A_U05Potrafi prawidłowo zaplanować, przeprowadzić eksperyment badawczy, dokonać analizy i prezentacji uzyskanych wyników
I_2A_U10Potrafi wykorzystywać oprogramowanie wspomagające rozwiązywanie wybranych problemów
Cel przedmiotuC-2Kształtowanie umiejętności rozpoznania sytuacji decyzyjnej i właściwego doboru modelu optymalizacyjnego, poszukiwania rozwiązań optymalnych oraz interpretacji otrzymanych wyników i ewentualnej interakcji z decydentem
Treści programoweT-L-1Rozwiązywanie zadań optymalizacyjnych za pomocą programu PROTASS2, dotyczących: programowania liniowego (PL) metodą SIMPLEKS, programowania w liczbach całkowitych, problemów przydziału oraz zagadnienia trensportowego, WPL za pomocą programowania celowego, metody STEM.
Metody nauczaniaM-3Ćwiczenia laboratoryjne polegają na grupowym lub indywidualnym budowaniu modeli optymalizacyjnych dla różnych sytuacji decyzyjnych, poszukiwaniu rozwiązań optymalnych z wykorzystaniem oprogramowania oraz interpretacji otrzymanych rozwiązań.
Sposób ocenyS-1Ocena podsumowująca: Kolokwium sprawdzające umiejętność budowania właściwych modeli programowania matematycznego do różnych sytacji decyzyjnych oraz posługiwania się dostępnym oprogramowaniem do wspomagania modelowania i rozwiązywania problemów optymalizacyjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi wykorzystać wskazane przez nauczyciela metody i narzędzia informatyczne do rozwiązywania problemów decyzyjnych jednokryterialnych, ułożyć odpowiedni model matematyczny, znaleźć jego rozwiązanie.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D19/O/1-2_K01Student rozumie potrzebę komunikacji i współpracy z zewnętrznym środowiskiem przy tworzeniu systemu wspomagania decyzji
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_K02Świadomie rozumie potrzeby dokształcania i dzielenia się wiedzą
Cel przedmiotuC-2Kształtowanie umiejętności rozpoznania sytuacji decyzyjnej i właściwego doboru modelu optymalizacyjnego, poszukiwania rozwiązań optymalnych oraz interpretacji otrzymanych wyników i ewentualnej interakcji z decydentem
Treści programoweT-L-1Rozwiązywanie zadań optymalizacyjnych za pomocą programu PROTASS2, dotyczących: programowania liniowego (PL) metodą SIMPLEKS, programowania w liczbach całkowitych, problemów przydziału oraz zagadnienia trensportowego, WPL za pomocą programowania celowego, metody STEM.
Metody nauczaniaM-3Ćwiczenia laboratoryjne polegają na grupowym lub indywidualnym budowaniu modeli optymalizacyjnych dla różnych sytuacji decyzyjnych, poszukiwaniu rozwiązań optymalnych z wykorzystaniem oprogramowania oraz interpretacji otrzymanych rozwiązań.
Sposób ocenyS-1Ocena podsumowująca: Kolokwium sprawdzające umiejętność budowania właściwych modeli programowania matematycznego do różnych sytacji decyzyjnych oraz posługiwania się dostępnym oprogramowaniem do wspomagania modelowania i rozwiązywania problemów optymalizacyjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Przygotowuje się do poszczególnych zajęć i wykazuje zaangażowanie w trakcie zajęć.
3,5
4,0
4,5
5,0