Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (S2)
specjalność: projektowanie i zarządzanie projektami informatycznymi

Sylabus przedmiotu Modelowanie warstwy fizycznej systemu:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauki techniczne
Profil ogólnoakademicki
Moduł
Przedmiot Modelowanie warstwy fizycznej systemu
Specjalność systemy komputerowe i technologie mobilne
Jednostka prowadząca Katedra Architektury Komputerów i Telekomunikacji
Nauczyciel odpowiedzialny Marek Jaskuła <Marek.Jaskula@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 30 3,00,62egzamin
laboratoriaL2 30 2,00,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Z zakresu następujących przedmiotów: Elektronika, Elementy cyfrowe i układy logiczne, Technika cyfrowa, Przetwarzanie sygnałów

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Uzupełnienie wiedzy oraz pozyskaniu podstawowej umiejętności projektowania w zakresie zagadnień wykraczających poza działania o charakterze jedynie cyfrowego przetwarzania informacji
C-2Ugruntowanie świadomości, że przetwarzanie informacji odbywa się także w torze analogowym, i że fakt ten ma kluczowe znaczenie dla efektywności systemu pojmowanego całościowo

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Poznanie elem. i struktur programowych w LabView/myDAQ/Elvis6
T-L-2Kształtowanie sygnału (wzmocnienie, przesyłanie, identyfikacja parametrów)4
T-L-3Ocena wpływu przetwarzania a/c na jakość sygnału2
T-L-4Wyjście przetwornika c/a, filtracja antyaliasingowa2
T-L-5Modelowanie filtrów (projektowanie, dobór parametrów), filtracja sygnałów rzeczywistych4
T-L-6Analiza widmowa, wpływ okien czasowych4
T-L-7Analiza falkowa i dekompozycja sygnałów, odszumianie4
T-L-8Modelowanie elementów inercyjnych i oscylacyjnych4
30
wykłady
T-W-1Wprowadzenie do programowania w LabView6
T-W-2Klasa pojęć odnosząca się do warstwy fizycznej systemu: elementy wzmacniania i kształtowania charakterystyki sygnału, przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe, mnożenie i mieszanie sygnałów.2
T-W-3Podstawowe parametry toru przetwarzania sygnału analogowego: dynamika sygnały, parametry przetworników, błędy przetworników2
T-W-4Architektura przetworników cyfrowo-analogowych: struktury podstawowe, struktury segmentowane, przetworniki interpolujące, przetworniki mnożące, typu impulsowego i inne.4
T-W-5Architektura przetworników analogowo-cyfrowych: przetwornik jednobitowy – komparator, przetworniki typu flash, przetworniki aproksymujące progresywnie. Przetworniki typu sigma-delta: podstawy działania, zagadnienia nadpróbkowania, działanie pętli jedno i wielokrotnej, przykłady aplikacji.4
T-W-6Elementy teorii sygnałów. Analiza i estymacja spektralna.4
T-W-7Tor analogowy przetworników: konfigurowanie wzmacniaczy operacyjnych, wzmacniacz różnicowy, dopasowanie poziomów i wartości sygnału, zagadnienia szumowe, pasmo przenoszenia.2
T-W-8Otoczenie przetworników: źródła napięć referencyjnych, analogowe przełączniki i multipleksery, zegary taktujące, łączenie przetworników z urządzeniami cyfrowymi.2
T-W-9Charakterystyka elementów pasywnych: cechy rezystorów, cechy kondensatorów, cechy elementów indukcyjnych, problemy stosowania obwodów drukowanych.4
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Studia literaturowa w w zakresie tematycznym stosownie do bieżących zajęć laboratoryjnych20
A-L-2Przygotowanie zakresu wiedzy wymaganej w ramach bieżącego ćwiczenia laboratoryjnego20
A-L-3Realizacja części sprawozdawczej ćwiczeń12
A-L-4Udzał w konsultacjach i zaliczeniu formy zajęć2
54
wykłady
A-W-1Repetytorium treści wykładów na podstawie notatek35
A-W-2Studia literaturowe, uzupełniające43
A-W-3Udzał w konsultacjach2
A-W-4Udział w egzaminie2
82

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metoda podająca - wykład
M-2Metoda praktyczna: ćwiczenia laboratoryjne, pokaz, metoda projektów

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca - zaliczenie końcowe ustne
S-2Ocena formująca: W odniesieniu do ćwiczeń laboratoryjnych; ocena formująca: sprawdziany pisemne i ustne wejściowe do ćwiczen, ocena jakości sprawozdań po odbytych ćwiczeniach

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D18/04_W01
Zagadnienia analizy i modelowania warstwy fizycznej w procesie projektowania nowoczesnych systemów technicznych wymagają poszerzonej wiedzy z zakresu teorii sygnałów oraz metod informatycznych obróbki sygnałów w kontekście konkretnych rozwiązań o charakterze sprzętowym.
I_2A_W01, I_2A_W05, I_2A_W06C-1, C-2T-W-2, T-W-3, T-W-6, T-W-7, T-W-8, T-W-9, T-W-1, T-W-4, T-W-5M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D18/04_U01
Modelowanie warstwy fizycznej systemu łączy elementy teorii sygnałów oraz zaawansowanych metod przetwarzania sygnałów z wykorzystaniem umiejętności praktycznej implementacji na bazie sprzętu i narzędzi o charakterze informatycznym.
I_2A_U02, I_2A_U04, I_2A_U07, I_2A_U11, I_2A_U16C-1T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-1M-2S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D18/04_K01
Zagadnienia modelowania warstwy fizycznej, kluczowe w budowaniu nowoczesnych urządzeń technicznych, wymagają ciągłej aktualizacji wiedzy oraz kreatywności.
I_2A_K02, I_2A_K06C-2T-W-1, T-W-5M-1S-1

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_2A_D18/04_W01
Zagadnienia analizy i modelowania warstwy fizycznej w procesie projektowania nowoczesnych systemów technicznych wymagają poszerzonej wiedzy z zakresu teorii sygnałów oraz metod informatycznych obróbki sygnałów w kontekście konkretnych rozwiązań o charakterze sprzętowym.
2,0Brak elementarnej wiedzy.
3,0Elementarna wiedza przedmiotu.
3,5Elementarna wiedza przedmiotu zelementami wnioskowania.
4,0Podstawowa wiedza przedmiotu ze zdolnością wnioskowania, kojarzenia problemów i rozwiązywania podstawowych zadań obliczeniowych i symulacyjnych.
4,5Znaczna wiedza przedmiotu ze zdolnością wnioskowania, kojarzenia problemów i rozwiązywania zadań obliczeniowych. i realizacja zadań symulacyjnych.
5,0Kompletna wiedza przedmiotu w zakresie wykładanycm, ze zdolnością wnioskowania, kojarzenia problemów, rozwiązywania zadań obliczeniowych, realizacja zadań symulacyjnych, także ze zdolnością dokonywania oceny porównawczej oraz wartościującej.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_2A_D18/04_U01
Modelowanie warstwy fizycznej systemu łączy elementy teorii sygnałów oraz zaawansowanych metod przetwarzania sygnałów z wykorzystaniem umiejętności praktycznej implementacji na bazie sprzętu i narzędzi o charakterze informatycznym.
2,0Nie nabył jakich kolwiek umiejętności praktycznych.
3,0Posiada minimalne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu.
3,5Posiada minimalne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących.
4,0Posiada znaczne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących. Umie wyliczyć i zasymulować komputerowo obwód.
4,5Posiada znaczne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących. Umie wyliczyć i zasymulować komputerowo obwód oraz dokonać oceny jakościowej i ilościowej.
5,0Posiada znaczne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących. Umie wyliczyć i zasymulować komputerowo obwód oraz dokonać oceny jakościowej i ilościowej. Potrafi dokonać wyboru właściwego rozwiązania stosowanie do postawionego zadania.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
I_2A_D18/04_K01
Zagadnienia modelowania warstwy fizycznej, kluczowe w budowaniu nowoczesnych urządzeń technicznych, wymagają ciągłej aktualizacji wiedzy oraz kreatywności.
2,0Nie wykazuje zaangażowania w poszerzaniu wiedzy i doskonaleniu umiejętności w zakresie przedmiotu.
3,0Wykazuje elementarną skłonność do poprawiania swoich kompetencji w zakresie przedmiotui jedynie z obawy o konsekwencje.
3,5Podnosi swój profesjonalizm w sposób jedynie zapewniający bieżące wykonywanie zadań.
4,0Podnosi swój profesjonalizm w sposób aktywny, w miarę konieczności.
4,5Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań.
5,0Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań. Dodatkowo, jest aktywny środowiskowo, wymienia doświadczenia w środowisku akademickim.

Literatura podstawowa

  1. Kester W., Analog-Digital Conversion, Analog Devices Inc., 2011

Literatura dodatkowa

  1. Sydenham P.H., Podręcznik Metrologii, WKŁ, Warszawa, 1988

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Poznanie elem. i struktur programowych w LabView/myDAQ/Elvis6
T-L-2Kształtowanie sygnału (wzmocnienie, przesyłanie, identyfikacja parametrów)4
T-L-3Ocena wpływu przetwarzania a/c na jakość sygnału2
T-L-4Wyjście przetwornika c/a, filtracja antyaliasingowa2
T-L-5Modelowanie filtrów (projektowanie, dobór parametrów), filtracja sygnałów rzeczywistych4
T-L-6Analiza widmowa, wpływ okien czasowych4
T-L-7Analiza falkowa i dekompozycja sygnałów, odszumianie4
T-L-8Modelowanie elementów inercyjnych i oscylacyjnych4
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do programowania w LabView6
T-W-2Klasa pojęć odnosząca się do warstwy fizycznej systemu: elementy wzmacniania i kształtowania charakterystyki sygnału, przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe, mnożenie i mieszanie sygnałów.2
T-W-3Podstawowe parametry toru przetwarzania sygnału analogowego: dynamika sygnały, parametry przetworników, błędy przetworników2
T-W-4Architektura przetworników cyfrowo-analogowych: struktury podstawowe, struktury segmentowane, przetworniki interpolujące, przetworniki mnożące, typu impulsowego i inne.4
T-W-5Architektura przetworników analogowo-cyfrowych: przetwornik jednobitowy – komparator, przetworniki typu flash, przetworniki aproksymujące progresywnie. Przetworniki typu sigma-delta: podstawy działania, zagadnienia nadpróbkowania, działanie pętli jedno i wielokrotnej, przykłady aplikacji.4
T-W-6Elementy teorii sygnałów. Analiza i estymacja spektralna.4
T-W-7Tor analogowy przetworników: konfigurowanie wzmacniaczy operacyjnych, wzmacniacz różnicowy, dopasowanie poziomów i wartości sygnału, zagadnienia szumowe, pasmo przenoszenia.2
T-W-8Otoczenie przetworników: źródła napięć referencyjnych, analogowe przełączniki i multipleksery, zegary taktujące, łączenie przetworników z urządzeniami cyfrowymi.2
T-W-9Charakterystyka elementów pasywnych: cechy rezystorów, cechy kondensatorów, cechy elementów indukcyjnych, problemy stosowania obwodów drukowanych.4
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Studia literaturowa w w zakresie tematycznym stosownie do bieżących zajęć laboratoryjnych20
A-L-2Przygotowanie zakresu wiedzy wymaganej w ramach bieżącego ćwiczenia laboratoryjnego20
A-L-3Realizacja części sprawozdawczej ćwiczeń12
A-L-4Udzał w konsultacjach i zaliczeniu formy zajęć2
54
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Repetytorium treści wykładów na podstawie notatek35
A-W-2Studia literaturowe, uzupełniające43
A-W-3Udzał w konsultacjach2
A-W-4Udział w egzaminie2
82
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D18/04_W01Zagadnienia analizy i modelowania warstwy fizycznej w procesie projektowania nowoczesnych systemów technicznych wymagają poszerzonej wiedzy z zakresu teorii sygnałów oraz metod informatycznych obróbki sygnałów w kontekście konkretnych rozwiązań o charakterze sprzętowym.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W01Ma poszerzoną i pogłębioną wiedzę w zakresie wybranych działów matematyki teoretycznej oraz matematyki stosowanej
I_2A_W05Ma rozszerzoną i podbudowaną teoretycznie wiedzę z zakresu metod informatyki wykorzystywanych do rozwiązywania problemów w wybranych obszarach nauki i techniki
I_2A_W06Posiada wiedzę o narzędziach sprzętowo-programowych wspomagających rozwiązywanie wybranych i złożonych problemów w różnych obszarach nauki i techniki
Cel przedmiotuC-1Uzupełnienie wiedzy oraz pozyskaniu podstawowej umiejętności projektowania w zakresie zagadnień wykraczających poza działania o charakterze jedynie cyfrowego przetwarzania informacji
C-2Ugruntowanie świadomości, że przetwarzanie informacji odbywa się także w torze analogowym, i że fakt ten ma kluczowe znaczenie dla efektywności systemu pojmowanego całościowo
Treści programoweT-W-2Klasa pojęć odnosząca się do warstwy fizycznej systemu: elementy wzmacniania i kształtowania charakterystyki sygnału, przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe, mnożenie i mieszanie sygnałów.
T-W-3Podstawowe parametry toru przetwarzania sygnału analogowego: dynamika sygnały, parametry przetworników, błędy przetworników
T-W-6Elementy teorii sygnałów. Analiza i estymacja spektralna.
T-W-7Tor analogowy przetworników: konfigurowanie wzmacniaczy operacyjnych, wzmacniacz różnicowy, dopasowanie poziomów i wartości sygnału, zagadnienia szumowe, pasmo przenoszenia.
T-W-8Otoczenie przetworników: źródła napięć referencyjnych, analogowe przełączniki i multipleksery, zegary taktujące, łączenie przetworników z urządzeniami cyfrowymi.
T-W-9Charakterystyka elementów pasywnych: cechy rezystorów, cechy kondensatorów, cechy elementów indukcyjnych, problemy stosowania obwodów drukowanych.
T-W-1Wprowadzenie do programowania w LabView
T-W-4Architektura przetworników cyfrowo-analogowych: struktury podstawowe, struktury segmentowane, przetworniki interpolujące, przetworniki mnożące, typu impulsowego i inne.
T-W-5Architektura przetworników analogowo-cyfrowych: przetwornik jednobitowy – komparator, przetworniki typu flash, przetworniki aproksymujące progresywnie. Przetworniki typu sigma-delta: podstawy działania, zagadnienia nadpróbkowania, działanie pętli jedno i wielokrotnej, przykłady aplikacji.
Metody nauczaniaM-1Metoda podająca - wykład
Sposób ocenyS-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca - zaliczenie końcowe ustne
Kryteria ocenyOcenaKryterium oceny
2,0Brak elementarnej wiedzy.
3,0Elementarna wiedza przedmiotu.
3,5Elementarna wiedza przedmiotu zelementami wnioskowania.
4,0Podstawowa wiedza przedmiotu ze zdolnością wnioskowania, kojarzenia problemów i rozwiązywania podstawowych zadań obliczeniowych i symulacyjnych.
4,5Znaczna wiedza przedmiotu ze zdolnością wnioskowania, kojarzenia problemów i rozwiązywania zadań obliczeniowych. i realizacja zadań symulacyjnych.
5,0Kompletna wiedza przedmiotu w zakresie wykładanycm, ze zdolnością wnioskowania, kojarzenia problemów, rozwiązywania zadań obliczeniowych, realizacja zadań symulacyjnych, także ze zdolnością dokonywania oceny porównawczej oraz wartościującej.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D18/04_U01Modelowanie warstwy fizycznej systemu łączy elementy teorii sygnałów oraz zaawansowanych metod przetwarzania sygnałów z wykorzystaniem umiejętności praktycznej implementacji na bazie sprzętu i narzędzi o charakterze informatycznym.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_U02Potrafi pozyskiwać informacje z różnych źródeł (literatura, Internet, bazy danych, dokumentacja techniczna), dokonywać ich interpretacji i oceny
I_2A_U04Potrafi wybrać, krytycznie ocenić przydatność i zastosować metodę i narzędzia rozwiązania złożonego zadania inżynierskiego
I_2A_U07Potrafi wykorzystywać poznane metody, techniki i modele do rozwiązywania złożonych problemów
I_2A_U11Potrafi dokonywać analizy i syntezy złożonych systemów
I_2A_U16Potrafi określić kierunek dalszego uczenia się i zrealizować proces samokształcenia
Cel przedmiotuC-1Uzupełnienie wiedzy oraz pozyskaniu podstawowej umiejętności projektowania w zakresie zagadnień wykraczających poza działania o charakterze jedynie cyfrowego przetwarzania informacji
Treści programoweT-L-2Kształtowanie sygnału (wzmocnienie, przesyłanie, identyfikacja parametrów)
T-L-3Ocena wpływu przetwarzania a/c na jakość sygnału
T-L-4Wyjście przetwornika c/a, filtracja antyaliasingowa
T-L-5Modelowanie filtrów (projektowanie, dobór parametrów), filtracja sygnałów rzeczywistych
T-L-6Analiza widmowa, wpływ okien czasowych
T-L-7Analiza falkowa i dekompozycja sygnałów, odszumianie
T-L-8Modelowanie elementów inercyjnych i oscylacyjnych
T-L-1Poznanie elem. i struktur programowych w LabView/myDAQ/Elvis
Metody nauczaniaM-2Metoda praktyczna: ćwiczenia laboratoryjne, pokaz, metoda projektów
Sposób ocenyS-2Ocena formująca: W odniesieniu do ćwiczeń laboratoryjnych; ocena formująca: sprawdziany pisemne i ustne wejściowe do ćwiczen, ocena jakości sprawozdań po odbytych ćwiczeniach
Kryteria ocenyOcenaKryterium oceny
2,0Nie nabył jakich kolwiek umiejętności praktycznych.
3,0Posiada minimalne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu.
3,5Posiada minimalne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących.
4,0Posiada znaczne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących. Umie wyliczyć i zasymulować komputerowo obwód.
4,5Posiada znaczne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących. Umie wyliczyć i zasymulować komputerowo obwód oraz dokonać oceny jakościowej i ilościowej.
5,0Posiada znaczne umiejętności związane z konfigurowaniem i łączeniem podstawowych struktur warstwy fizycznej systemu wraz z umiejętnością dokonywania odpowiednich pomiarów weryfikujących. Umie wyliczyć i zasymulować komputerowo obwód oraz dokonać oceny jakościowej i ilościowej. Potrafi dokonać wyboru właściwego rozwiązania stosowanie do postawionego zadania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D18/04_K01Zagadnienia modelowania warstwy fizycznej, kluczowe w budowaniu nowoczesnych urządzeń technicznych, wymagają ciągłej aktualizacji wiedzy oraz kreatywności.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_K02Świadomie rozumie potrzeby dokształcania i dzielenia się wiedzą
I_2A_K06Potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
Cel przedmiotuC-2Ugruntowanie świadomości, że przetwarzanie informacji odbywa się także w torze analogowym, i że fakt ten ma kluczowe znaczenie dla efektywności systemu pojmowanego całościowo
Treści programoweT-W-1Wprowadzenie do programowania w LabView
T-W-5Architektura przetworników analogowo-cyfrowych: przetwornik jednobitowy – komparator, przetworniki typu flash, przetworniki aproksymujące progresywnie. Przetworniki typu sigma-delta: podstawy działania, zagadnienia nadpróbkowania, działanie pętli jedno i wielokrotnej, przykłady aplikacji.
Metody nauczaniaM-1Metoda podająca - wykład
Sposób ocenyS-1Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca - zaliczenie końcowe ustne
Kryteria ocenyOcenaKryterium oceny
2,0Nie wykazuje zaangażowania w poszerzaniu wiedzy i doskonaleniu umiejętności w zakresie przedmiotu.
3,0Wykazuje elementarną skłonność do poprawiania swoich kompetencji w zakresie przedmiotui jedynie z obawy o konsekwencje.
3,5Podnosi swój profesjonalizm w sposób jedynie zapewniający bieżące wykonywanie zadań.
4,0Podnosi swój profesjonalizm w sposób aktywny, w miarę konieczności.
4,5Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań.
5,0Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań. Dodatkowo, jest aktywny środowiskowo, wymienia doświadczenia w środowisku akademickim.