Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria produkcji w Przemyśle 4.0 (S1)
Sylabus przedmiotu Fizyka:
Informacje podstawowe
Kierunek studiów | Inżynieria produkcji w Przemyśle 4.0 | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | praktyczny | ||
Moduł | — | ||
Przedmiot | Fizyka | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Zarządzania Produkcją | ||
Nauczyciel odpowiedzialny | Paweł Gnutek <Pawel.Gnutek@zut.edu.pl> | ||
Inni nauczyciele | Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>, Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Zna podstawy fizyki ze szkoły średniej (podstawowe wielkości fizyczne; zasadnicze zjawiska fizyczne w otaczającym świecie). |
W-2 | Zna podstawy algebry (wektory, macierze, podstawowe funkcje matematyczne; rozwiązywanie równań, iloczyn skalarny, wektorowy; pojęcie pochodnej i całki) w zakresie szkoły średniej. |
W-3 | Potrafi wykorzystać podstawową wiedzę matematyczną do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych |
W-4 | Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem |
W-5 | Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej |
C-2 | Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki |
C-3 | Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników |
C-4 | Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim |
C-5 | Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku |
C-6 | Rozwinięcie umiejętności komunikacji i pracy w grupie |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów. | 4 |
T-L-2 | Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/ | 26 |
30 | ||
wykłady | ||
T-W-1 | Układ jednostek SI, zasady tworzenia jednostek wtórnych | 1 |
T-W-2 | Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek | 1 |
T-W-3 | Elementy szczególnej i ogólnej teorii względności | 1 |
T-W-4 | Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki) | 1 |
T-W-5 | Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości | 1 |
T-W-6 | Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa) | 1 |
T-W-7 | Drgania harmoniczne, zjawisko rezonansu | 1 |
T-W-8 | Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody | 1 |
T-W-9 | Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia | 1 |
T-W-10 | Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser | 1 |
T-W-11 | Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory | 1 |
T-W-12 | Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu | 1 |
T-W-13 | Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów | 1 |
T-W-14 | Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów | 1 |
T-W-15 | Drgania i fale elektromagnetyczne – równania Maxwella | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Udział w zajęciach laboratoryjnych | 30 |
A-L-2 | Przygotowanie do laboratorium + przygotowanie sprawozdań | 15 |
A-L-3 | Konsultacje | 5 |
50 | ||
wykłady | ||
A-W-1 | Udział w egzaminie | 5 |
A-W-2 | Studiowanie literatury związanej z wykładem | 10 |
A-W-3 | uczestnictwo w zajęciach | 15 |
A-W-4 | Konsultacje | 5 |
A-W-5 | Przygotowanie do egzaminu | 10 |
A-W-6 | Samodzielne rozwiązywanie zadań problemowych | 5 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z użyciem środków audiowizualnych |
M-2 | Wykład z pokazami eksperymentów fizycznych |
M-3 | Ćwiczenia audytoryjne |
M-4 | Ćwiczenia laboratoryjne |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Egzamin pisemny |
S-2 | Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń |
S-3 | Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IPP4_1P_B03_W01 Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań. | IPP4_1P_W02 | — | — | C-1, C-2 | T-L-1, T-L-2, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15 | M-1, M-2, M-3, M-4 | S-1, S-2, S-3 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IPP4_1P_B03_U01 Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych. | IPP4_1P_U04 | — | — | C-2, C-3, C-4, C-6 | T-L-1, T-L-2, T-W-1 | M-1, M-2, M-4 | S-3 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IPP4_1P_B03_K01 Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej. | IPP4_1P_K01 | — | — | C-1, C-2, C-3, C-4, C-5, C-6 | T-L-1, T-L-2, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15 | M-1, M-2, M-3, M-4 | S-1, S-2, S-3 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IPP4_1P_B03_W01 Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań. | 2,0 | Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru. |
3,0 | Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. | |
3,5 | Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. | |
4,0 | Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa. | |
4,5 | Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. | |
5,0 | Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IPP4_1P_B03_U01 Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych. | 2,0 | Brak sprawozdania z ćwiczeń laboratoryjnych. |
3,0 | Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik. | |
3,5 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach. | |
4,0 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach. | |
4,5 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach. | |
5,0 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IPP4_1P_B03_K01 Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej. | 2,0 | Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. |
3,0 | Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności. | |
3,5 | Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności. | |
4,0 | Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności. | |
4,5 | Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności. | |
5,0 | Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności. |
Literatura podstawowa
- K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
- D. Halliday, R. Resnick, Fizyka, T. I i II, PWN, Warszawa, 1989
- C. Bobrowski, Fizyka – krótki kurs, Wyd. Naukowo-Techniczne, Warszawa, 2003
- T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
- A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006
- T. Rewaj (red.), Laboratoria z fizyki, część I, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
- I. Kruk, J. Typek, Laboratoria z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007
Literatura dodatkowa
- D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)