Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria produkcji w Przemyśle 4.0 (S1)

Sylabus przedmiotu Fizyka:

Informacje podstawowe

Kierunek studiów Inżynieria produkcji w Przemyśle 4.0
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil praktyczny
Moduł
Przedmiot Fizyka
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Zarządzania Produkcją
Nauczyciel odpowiedzialny Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>
Inni nauczyciele Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>, Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 30 2,00,50zaliczenie
wykładyW1 15 2,00,50egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Zna podstawy fizyki ze szkoły średniej (podstawowe wielkości fizyczne; zasadnicze zjawiska fizyczne w otaczającym świecie).
W-2Zna podstawy algebry (wektory, macierze, podstawowe funkcje matematyczne; rozwiązywanie równań, iloczyn skalarny, wektorowy; pojęcie pochodnej i całki) w zakresie szkoły średniej.
W-3Potrafi wykorzystać podstawową wiedzę matematyczną do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych
W-4Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem
W-5Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.4
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/26
30
wykłady
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych1
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek1
T-W-3Elementy szczególnej i ogólnej teorii względności1
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)1
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości1
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)1
T-W-7Drgania harmoniczne, zjawisko rezonansu1
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody1
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia1
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser1
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory1
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu1
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów1
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów1
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań15
A-L-3Konsultacje5
50
wykłady
A-W-1Udział w egzaminie5
A-W-2Studiowanie literatury związanej z wykładem10
A-W-3uczestnictwo w zajęciach15
A-W-4Konsultacje5
A-W-5Przygotowanie do egzaminu10
A-W-6Samodzielne rozwiązywanie zadań problemowych5
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IPP4_1P_B03_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
IPP4_1P_W02C-1, C-2T-L-1, T-L-2, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15M-1, M-2, M-3, M-4S-1, S-2, S-3

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IPP4_1P_B03_U01
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
IPP4_1P_U04C-2, C-3, C-4, C-6T-L-1, T-L-2, T-W-1M-1, M-2, M-4S-3

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IPP4_1P_B03_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
IPP4_1P_K01C-1, C-2, C-3, C-4, C-5, C-6T-L-1, T-L-2, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15M-1, M-2, M-3, M-4S-1, S-2, S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
IPP4_1P_B03_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru.
3,0Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
3,5Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
IPP4_1P_B03_U01
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
2,0Brak sprawozdania z ćwiczeń laboratoryjnych.
3,0Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach.
4,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach.
4,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
IPP4_1P_B03_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
4,0Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
5,0Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.

Literatura podstawowa

  1. K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
  2. D. Halliday, R. Resnick, Fizyka, T. I i II, PWN, Warszawa, 1989
  3. C. Bobrowski, Fizyka – krótki kurs, Wyd. Naukowo-Techniczne, Warszawa, 2003
  4. T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  5. A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006
  6. T. Rewaj (red.), Laboratoria z fizyki, część I, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  7. I. Kruk, J. Typek, Laboratoria z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007

Literatura dodatkowa

  1. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.4
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/26
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych1
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek1
T-W-3Elementy szczególnej i ogólnej teorii względności1
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)1
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości1
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)1
T-W-7Drgania harmoniczne, zjawisko rezonansu1
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody1
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia1
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser1
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory1
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu1
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów1
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów1
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań15
A-L-3Konsultacje5
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w egzaminie5
A-W-2Studiowanie literatury związanej z wykładem10
A-W-3uczestnictwo w zajęciach15
A-W-4Konsultacje5
A-W-5Przygotowanie do egzaminu10
A-W-6Samodzielne rozwiązywanie zadań problemowych5
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIPP4_1P_B03_W01Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówIPP4_1P_W02Zna i rozumie podstawowe pojęcia, zjawiska oraz metody i teorie wyjaśniające złożone zależności między tymi zjawiskami, stanowiące podstawową wiedzę ogólną z zakresu inżynierii mechanicznej na poziomie wyższym, niezbędną do zrozumienia, opisu, analizy i praktycznego rozwiązywania zadań w zakresie inżynierii produkcji w Przemyśle 4.0.
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek
T-W-3Elementy szczególnej i ogólnej teorii względności
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-7Drgania harmoniczne, zjawisko rezonansu
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru.
3,0Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
3,5Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIPP4_1P_B03_U01Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
Odniesienie do efektów kształcenia dla kierunku studiówIPP4_1P_U04Potrafi planować i przeprowadzać eksperymenty, w tym pomiary wielkości fizycznych, mechanicznych, pneumatycznych, hydraulicznych i elektrycznych oraz realizować eksperymenty numeryczne i symulacyjne procesów fizycznych, przedstawiać otrzymane wyniki w formie liczbowej i graficznej, interpretować uzyskane wyniki i wyciągać wnioski.
Cel przedmiotuC-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-4Ćwiczenia laboratoryjne
Sposób ocenyS-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie
Kryteria ocenyOcenaKryterium oceny
2,0Brak sprawozdania z ćwiczeń laboratoryjnych.
3,0Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach.
4,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach.
4,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIPP4_1P_B03_K01Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
Odniesienie do efektów kształcenia dla kierunku studiówIPP4_1P_K01Ma świadomość znaczenia wiedzy w rozwiązaniu problemów poznawczych i praktycznych, potrafi krytycznie ocenić posiadaną wiedzę oraz ją uzupełnić i doskonalić, ma świadomość ważności i rozumienia pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływ na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje.
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek
T-W-3Elementy szczególnej i ogólnej teorii względności
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-7Drgania harmoniczne, zjawisko rezonansu
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie
Kryteria ocenyOcenaKryterium oceny
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
4,0Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
5,0Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.