Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria transportu (N1)

Sylabus przedmiotu Fizyka:

Informacje podstawowe

Kierunek studiów Inżynieria transportu
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Fizyka
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Fizyki
Nauczyciel odpowiedzialny Nikos Guskos <Nikos.Guskos@zut.edu.pl>
Inni nauczyciele Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>, Irena Kruk <Irena.Kruk@zut.edu.pl>, Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 18 2,50,38zaliczenie
wykładyW2 18 2,50,62egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Zna podstawy fizyki ze szkoły średniej (podstawowe wielkości fizyczne; zasadnicze zjawiska fizyczne w otaczającym świecie).
W-2Zna podstawy algebry (wektory, macierze, podstawowe funkcje matematyczne; rozwiązywanie równań, iloczyn skalarny, wektorowy; pojęcie pochodnej i całki) w zakresie szkoły średniej.
W-3Potrafi wykorzystać podstawową wiedzę matematyczną do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych
W-4Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem
W-5Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-3Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-4Rozwinięcie umiejętności komunikacji i pracy w grupie

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.2
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki16
18
wykłady
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych,analiza wymiarowa2
T-W-2Prawa i zasady zachowania fizyki klasycznej.6
T-W-3Elementy szczególnej i ogólnej teorii względności, energetyka jądrowa2
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki).4
T-W-5Ruch drgający: oscylator harmoniczny prosty, tłumiony, wymuszony; drgania złożone, rezonans.4
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w zajęciach laboratoryjnych18
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań33
A-L-3Realizacja sprawozdania (praca w zespołach lub praca własna studenta).12
63
wykłady
A-W-1Udział w wykładzie18
A-W-2Konsultacje4
A-W-3Przygotowanie do egzaminu26
A-W-4Udział w egzaminie2
A-W-5Studiowanie literatury związanej z wykładem12
62

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia laboratoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń laboratoryjnych
S-3Ocena formująca: Test wiedzy teoretycznej przeprowadzony w czasie wykładu (1g) w środku semestru

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IT_1A_B05_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
IT_1A_W02C-1T-W-5, T-W-1, T-W-2, T-W-3, T-W-4, T-L-1, T-L-2M-1, M-2, M-3S-1, S-3, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IT_1A_B05_U01
Student potrafi wykonać i opracować wyniki pomiarów prostych eksoerymentów fizycznych
IT_1A_U01, IT_1A_U02C-2, C-3, C-4T-W-1, T-L-1, T-L-2M-3S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IT_1A_B05_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
IT_1A_K01, IT_1A_K02C-1, C-2, C-3, C-4T-W-1, T-L-1, T-L-2M-1, M-2, M-3S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
IT_1A_B05_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
2,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest poniżej 50 %.
3,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 50 % i sięga do 60 %.
3,5Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 60 % i sięga do 70 %.
4,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 70 % i sięga do 80 %.
4,5Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 80 % i sięga do 90 %.
5,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest powyżej 90 %.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
IT_1A_B05_U01
Student potrafi wykonać i opracować wyniki pomiarów prostych eksoerymentów fizycznych
2,0Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki oraz ich zastosować do prostych eksperymentów fizycznych.
3,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych ćwiczeniach laboratoryjnych jest większa od 50% i sięga 60 %.
3,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest większa od 60% i sięga 70 %.
4,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest większa od 70% i sięga 80 %.
4,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest większa od 80% i sięga 90 %.
5,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest w zakresie od 90 d0 100%.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
IT_1A_B05_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
2,0
3,0
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
  2. T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  3. A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006

Literatura dodatkowa

  1. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.2
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki16
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych,analiza wymiarowa2
T-W-2Prawa i zasady zachowania fizyki klasycznej.6
T-W-3Elementy szczególnej i ogólnej teorii względności, energetyka jądrowa2
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki).4
T-W-5Ruch drgający: oscylator harmoniczny prosty, tłumiony, wymuszony; drgania złożone, rezonans.4
18

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach laboratoryjnych18
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań33
A-L-3Realizacja sprawozdania (praca w zespołach lub praca własna studenta).12
63
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładzie18
A-W-2Konsultacje4
A-W-3Przygotowanie do egzaminu26
A-W-4Udział w egzaminie2
A-W-5Studiowanie literatury związanej z wykładem12
62
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIT_1A_B05_W01Student ma widzę obejmującą mechanikę, termodynamikę, optykę, w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówIT_1A_W02ma wiedzę w zakresie fizyki, obejmującą mechanikę, termodynamikę, fizykę ciała stałego, elektryczność i magnetyzm w tym niezbędną do zrozumienia podstawowych zjawisk fizycznych występujących w pojazdach samochodowych i ich otoczeniu
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
Treści programoweT-W-5Ruch drgający: oscylator harmoniczny prosty, tłumiony, wymuszony; drgania złożone, rezonans.
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych,analiza wymiarowa
T-W-2Prawa i zasady zachowania fizyki klasycznej.
T-W-3Elementy szczególnej i ogólnej teorii względności, energetyka jądrowa
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki).
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-3Ocena formująca: Test wiedzy teoretycznej przeprowadzony w czasie wykładu (1g) w środku semestru
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia laboratoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest poniżej 50 %.
3,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 50 % i sięga do 60 %.
3,5Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 60 % i sięga do 70 %.
4,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 70 % i sięga do 80 %.
4,5Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest większa od 80 % i sięga do 90 %.
5,0Wiedza studenta z podstaw fizyki niezbędna do ilościowego opisu, rozumienia i rozwiązywania prostych zadań jest powyżej 90 %.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIT_1A_B05_U01Student potrafi wykonać i opracować wyniki pomiarów prostych eksoerymentów fizycznych
Odniesienie do efektów kształcenia dla kierunku studiówIT_1A_U01potrafi pozyskiwać informacje z literatury, baz danych i innych dostępnych źródeł; potrafi łączyć uzyskane informacje, dokonywać ich interpretacji, wyciągać wnioski i formułować i uzasadniać opinie
IT_1A_U02potrafi pracować indywidualnie i w zespole, potrafi opracować i zrealizować harmonogram prac zapewniający terminową realizację zleconego zadania inżynierskiego w transporcie, potrafi porozumieć się w środowisku zawodowym i pozazawodowym używając przy tym różnych technik
Cel przedmiotuC-2Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-3Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-4Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych,analiza wymiarowa
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki
Metody nauczaniaM-3Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena formująca: Kolokwia zaliczające ćwiczenia laboratoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki oraz ich zastosować do prostych eksperymentów fizycznych.
3,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych ćwiczeniach laboratoryjnych jest większa od 50% i sięga 60 %.
3,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest większa od 60% i sięga 70 %.
4,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest większa od 70% i sięga 80 %.
4,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest większa od 80% i sięga 90 %.
5,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do prostych problemów fizycznych na ćwiczeniach laboratoryjnych jest w zakresie od 90 d0 100%.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIT_1A_B05_K01Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
Odniesienie do efektów kształcenia dla kierunku studiówIT_1A_K01rozumie potrzebę i zna możliwości dokształcania się i podnoszenia kompetencji zawodowych, osobistych i społecznych
IT_1A_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżyniera transportu, w tym jej wpływ na środowisko, i związaną z tym odpowiedzialność za podejmowane decyzje
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-3Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-4Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych,analiza wymiarowa
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia laboratoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0
3,5
4,0
4,5
5,0