Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Zarządzanie i inżynieria produkcji (S1)

Sylabus przedmiotu Systemy konwersji energii wykorzystujące odnawialne i konwencjonalne źródła:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Systemy konwersji energii wykorzystujące odnawialne i konwencjonalne źródła
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Zarządzania Produkcją
Nauczyciel odpowiedzialny Radomir Kaczmarek <Radomir.Kaczmarek@zut.edu.pl>
Inni nauczyciele Agnieszka Garnysz-Rachtan <agnieszka.garnysz@zut.edu.pl>, Radomir Kaczmarek <Radomir.Kaczmarek@zut.edu.pl>, Tomasz Kujawa <Tomasz.Kujawa@zut.edu.pl>
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 4 Grupa obieralna 2

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP4 15 1,50,33zaliczenie
laboratoriaL4 15 1,50,33zaliczenie
wykładyW4 30 3,00,34zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Zaliczenie przedmiotu: Fizyka i Matematyka

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Podanie i omówienie związków matematycznych pozwalających na wykonanie bilansów energii prostych układów termodynamicznych;
C-2Przekazanie wiedzy na temat użytecznych form energii z róźnych źródeł odnawialnych.
C-3Przedstawienie stanu wiedzy odnośnie perspektywicznych metod wytwarzania użytecznych form energii.
C-4Nauczenie umiejetności stosowania podstawowych zalezności matematycznych w bilansowaniu systemów energetycznych, ze szczególnym nastawieniem na systemy zasilane ze źródeł odnawialnych.
C-5Przedstawienie laboratoryjnych systemów konwersji energii odnawialnej, zapoznanie z zasadą działania oraz metodyką pomiaru wielkości pośrednich i obliczania efektywności procesu konwersji energii.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Badanie siłowni fotowoltaicznej, badanie siłowni wiatrowej, badanie wartości opałowej biomasy, badanie pompy ciepła.15
15
projekty
T-P-1Projekt powiązany z tematyka wykładu (projekt elektrowni/elektrociepłowni zasilanej z odnawialnego źrdóła energii)15
15
wykłady
T-W-1I zasada termodynamiki. Formy przenoszenia energii: praca i ciepło. Bilans energetyczny układu zamkniętego.2
T-W-2Zasoby energetyczne. Paliwa i użyteczne formy energii. Popyt i podaż energii (w ujęciu dobowym i rocznym).2
T-W-3Konwersja energii (metody wytwarzania użytecznych form energii, metody konwersji prądu elektrycznego.2
T-W-4Metody konwersji energii promieniowania słonecznego (kolektory, układy fotowoltaiczne i elektrownie słoneczne).2
T-W-5Biomasa i biopaliwa.4
T-W-6Energetyka wiatrowa.2
T-W-7Hydroenergetyka1
T-W-8Energia geotermalna i geotermiczna.2
T-W-9Perspektywiczne źródła i nośniki energii (ogniwa paliwowe, gaz łupkowy, technologia ORC i inne)2
T-W-10Energetyka jądrowa. Przemiany jądrowe. Paliwa jądrowe. Rodzaje reaktorów i elektrowni jądrowych. Cykl paliwowy. Odpady radioaktywne.4
T-W-11Akumulacji energii (magazynowanie energii termicznej, mechanicznej i elektrycznej).4
T-W-12Technologie wodorowe.2
T-W-13Zaliczenie1
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach15
A-L-2praca własna studenta (opracowanie sprawozdania z przeprowadzonych zajęć)23
38
projekty
A-P-1uczestnictwo w zajęciach15
A-P-2praca własna studenta23
38
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2praca własna studenta (poszerzanie wiedzy na podstawie dostepnej literatury oraz informacji dostępnych w internecie), powtarzanie wiadomości45
75

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjno-problemowy
M-2Projekt
M-3Laboratorium

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie wykładu polega na uzyskaniu 61% punktów na zaliczeniu końcowym.
S-2Ocena formująca: Zaliczenie zajęć projektowyc polaega na przygotowaniu raportu oraz prezentacji wyników
S-3Ocena formująca: Aby zaliczyć laboratorium nalezy spełnić wymienione warunki: - należy przyjść na zajęcia przygotowanym do zajęć zgodnie z wytycznymi podanymi przez prowadzacego; - aktywnie uczestniczyć w zajęciach; - przygotować sprawozdanie z wykonanych zajęć i przekazać je prowadzącemu w ciagu 1 tygodnia od zajęć; poprawić błędy wskazane przez prowadzącego; -w wyznaczonym terminie podanym w harmonogramie laboratorium (dostepnym na stronie www.ktc.zut.edu.pl) uzyskać 61% punktów z zaliczenia.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_1A_IJZ/10-2_W01
Po zaliczeniu wykładu student powinien mieć wiedzą ogólną odnośnie uźytecznych form energii i ich charakteru. Powinien umieć objaśnić wady i zalety stosowania różnych źródeł energii odnawialnej, wskazać ograniczenia w jej wykorzystaniu praktycznym a także powinien umieć wskazać aktualnie dostepne i perspektywiczne metody magazynowania energii.
ZIIP_1A_W03, ZIIP_1A_W08, ZIIP_1A_W13C-3, C-1, C-2T-W-2, T-W-7, T-W-1, T-W-4, T-W-11, T-W-12, T-W-10, T-W-3, T-W-9, T-W-5, T-W-6, T-W-8M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_1A_IJZ/10-2_U01
Po zaliczenie zajęć projektowych student powinien umieć przeprowadzić w podstawowym zakresie bilans energetyczny prostych układów energetycznych, ocenić możliwość zastosowania odnawialnych źródeł energii, oszacować i zaprezentować korzyści z zastosowania wybranej technologii energetycznej.
ZIIP_1A_U12, ZIIP_1A_U14C-4T-P-1M-2S-2
ZIIP_1A_IJZ/10-2_U02
Po zaliczeniu zajęć laboratoryjnych student powinien umieć analizować przebieg procesu energetycznego, interpretować wpływ zmiany parametrow pracy sytemu na efektywność jego pracy, oceniać poprawność uzyskanych w wyniku eksperymentu wyników pomiarów i weryfikować ich poprawność wykorzystujac w tym celu wiedzę teoretyczną.
ZIIP_1A_U12, ZIIP_1A_U19C-5T-L-1M-3S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ZIIP_1A_IJZ/10-2_W01
Po zaliczeniu wykładu student powinien mieć wiedzą ogólną odnośnie uźytecznych form energii i ich charakteru. Powinien umieć objaśnić wady i zalety stosowania różnych źródeł energii odnawialnej, wskazać ograniczenia w jej wykorzystaniu praktycznym a także powinien umieć wskazać aktualnie dostepne i perspektywiczne metody magazynowania energii.
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Z trudem kojarzy elementy nabytej wiedzy. Czasem nie wie jak posiadaną wiedzę wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ZIIP_1A_IJZ/10-2_U01
Po zaliczenie zajęć projektowych student powinien umieć przeprowadzić w podstawowym zakresie bilans energetyczny prostych układów energetycznych, ocenić możliwość zastosowania odnawialnych źródeł energii, oszacować i zaprezentować korzyści z zastosowania wybranej technologii energetycznej.
2,0Brak raportu lub przygotowanie raportu z duża ilością błędów, rzutujących na wynik końcowy.
3,0Przygotowanie raportu pisemnego, zawierającego znaczna ilość błęów i nieścisłości.
3,5Przygotowanie raportu pisemnego, zawierającego błędy i nieścisłości w zakresie .
4,0Przygotowanie raportu pisemnego, z niewielką ilością drobnych błędów oraz ustna prezentacja wyników.
4,5Przygotowanie raportu pisemnego, z minimalna ilością drobnych błędów oraz ustna prezentacja wyników
5,0Przygotowanie raportu pisemnego, bezbłędnego oraz ustna prezentacja wyników
ZIIP_1A_IJZ/10-2_U02
Po zaliczeniu zajęć laboratoryjnych student powinien umieć analizować przebieg procesu energetycznego, interpretować wpływ zmiany parametrow pracy sytemu na efektywność jego pracy, oceniać poprawność uzyskanych w wyniku eksperymentu wyników pomiarów i weryfikować ich poprawność wykorzystujac w tym celu wiedzę teoretyczną.
2,0nie oddanie któregokolwiek z 5 sprawozdań z zajęć laboratoryjnych, i/ lub nieobecność, i/lub niezaliczenie któregokolwiek z 5 zajęć laboratoryjnych
3,0oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 2,5-3,24 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
3,5oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 3,25-3,74 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
4,0oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 3,75-4,24 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
4,5oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 4,25-4,74 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
5,0oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 4,75-5,0 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)

Literatura podstawowa

  1. Lewandowski W.M., Proekologiczne odnawialne źródła energii, WNT, Warszawa, 2006
  2. Praca zbiorowa, Wybrane instrukcje do ćwiczeń oraz wzory sprawozdań, Materiały niepublikowane KTC, do pobrania z www.ktc.zut.edu.pl, 2011
  3. Praca pod redakcją T. Fodemskiego, Pomiary cieplne cz. 1 i 2, WNT, Warszawa, 2001
  4. Nowak W., Stachel A. A., Borsukiewicz-Gozdur A., Zastosowania odnawialnych źródeł energii, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2008
  5. Cieśliński J., Mikielewicz J, Niekonwencjonalne Urzadzenia i Systemy konwersji energii, Ossolineum, 1999
  6. Banaszek J i inni, Termodynamika. Przykłady i zadania., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1998

Literatura dodatkowa

  1. Jastrzębska G., Odnawialne źródła energii i pojazdy proekologiczne, WNT, Warzszawa, 2007
  2. Praca zbiorowa, Odnawialne i niekonwencjonalne źródła energii. Poradnik, Tarbonus, Kraków, 2008
  3. Hobler T, Ruch ciepła i wymienniki, WNT, Warszawa, 1997
  4. Jezierski G., Energia jadrowa wczoraj i dziś, WNT, Warszawa, 2005

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Badanie siłowni fotowoltaicznej, badanie siłowni wiatrowej, badanie wartości opałowej biomasy, badanie pompy ciepła.15
15

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Projekt powiązany z tematyka wykładu (projekt elektrowni/elektrociepłowni zasilanej z odnawialnego źrdóła energii)15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1I zasada termodynamiki. Formy przenoszenia energii: praca i ciepło. Bilans energetyczny układu zamkniętego.2
T-W-2Zasoby energetyczne. Paliwa i użyteczne formy energii. Popyt i podaż energii (w ujęciu dobowym i rocznym).2
T-W-3Konwersja energii (metody wytwarzania użytecznych form energii, metody konwersji prądu elektrycznego.2
T-W-4Metody konwersji energii promieniowania słonecznego (kolektory, układy fotowoltaiczne i elektrownie słoneczne).2
T-W-5Biomasa i biopaliwa.4
T-W-6Energetyka wiatrowa.2
T-W-7Hydroenergetyka1
T-W-8Energia geotermalna i geotermiczna.2
T-W-9Perspektywiczne źródła i nośniki energii (ogniwa paliwowe, gaz łupkowy, technologia ORC i inne)2
T-W-10Energetyka jądrowa. Przemiany jądrowe. Paliwa jądrowe. Rodzaje reaktorów i elektrowni jądrowych. Cykl paliwowy. Odpady radioaktywne.4
T-W-11Akumulacji energii (magazynowanie energii termicznej, mechanicznej i elektrycznej).4
T-W-12Technologie wodorowe.2
T-W-13Zaliczenie1
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach15
A-L-2praca własna studenta (opracowanie sprawozdania z przeprowadzonych zajęć)23
38
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1uczestnictwo w zajęciach15
A-P-2praca własna studenta23
38
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2praca własna studenta (poszerzanie wiedzy na podstawie dostepnej literatury oraz informacji dostępnych w internecie), powtarzanie wiadomości45
75
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięZIIP_1A_IJZ/10-2_W01Po zaliczeniu wykładu student powinien mieć wiedzą ogólną odnośnie uźytecznych form energii i ich charakteru. Powinien umieć objaśnić wady i zalety stosowania różnych źródeł energii odnawialnej, wskazać ograniczenia w jej wykorzystaniu praktycznym a także powinien umieć wskazać aktualnie dostepne i perspektywiczne metody magazynowania energii.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_W03zna podstawowe metody, techniki, narzędzia i technologie w wybranym obszarze inżynierii produkcji ze szczególnym uwzględnieniem komputerowego wspomagania projektowania i wytwarzania
ZIIP_1A_W08ma wiedzę z zakresu ochrony środowiska
ZIIP_1A_W13ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
Cel przedmiotuC-3Przedstawienie stanu wiedzy odnośnie perspektywicznych metod wytwarzania użytecznych form energii.
C-1Podanie i omówienie związków matematycznych pozwalających na wykonanie bilansów energii prostych układów termodynamicznych;
C-2Przekazanie wiedzy na temat użytecznych form energii z róźnych źródeł odnawialnych.
Treści programoweT-W-2Zasoby energetyczne. Paliwa i użyteczne formy energii. Popyt i podaż energii (w ujęciu dobowym i rocznym).
T-W-7Hydroenergetyka
T-W-1I zasada termodynamiki. Formy przenoszenia energii: praca i ciepło. Bilans energetyczny układu zamkniętego.
T-W-4Metody konwersji energii promieniowania słonecznego (kolektory, układy fotowoltaiczne i elektrownie słoneczne).
T-W-11Akumulacji energii (magazynowanie energii termicznej, mechanicznej i elektrycznej).
T-W-12Technologie wodorowe.
T-W-10Energetyka jądrowa. Przemiany jądrowe. Paliwa jądrowe. Rodzaje reaktorów i elektrowni jądrowych. Cykl paliwowy. Odpady radioaktywne.
T-W-3Konwersja energii (metody wytwarzania użytecznych form energii, metody konwersji prądu elektrycznego.
T-W-9Perspektywiczne źródła i nośniki energii (ogniwa paliwowe, gaz łupkowy, technologia ORC i inne)
T-W-5Biomasa i biopaliwa.
T-W-6Energetyka wiatrowa.
T-W-8Energia geotermalna i geotermiczna.
Metody nauczaniaM-1Wykład informacyjno-problemowy
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie wykładu polega na uzyskaniu 61% punktów na zaliczeniu końcowym.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowej wiedzy z zakresu przedmiotu.
3,0Student opanował podstawową wiedzę z zakresu przedmiotu. Z trudem kojarzy elementy nabytej wiedzy. Czasem nie wie jak posiadaną wiedzę wykorzystać.
3,5Student opanował wiedzę w stopniu pośrednim między oceną 3,0 i 4,0.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary i jej stosowania.
4,5Student opanował wiedzę w stopniu pośrednim między oceną 4,0 i 5,0.
5,0Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary i jej stosowania.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięZIIP_1A_IJZ/10-2_U01Po zaliczenie zajęć projektowych student powinien umieć przeprowadzić w podstawowym zakresie bilans energetyczny prostych układów energetycznych, ocenić możliwość zastosowania odnawialnych źródeł energii, oszacować i zaprezentować korzyści z zastosowania wybranej technologii energetycznej.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_U12ma umiejętności w zakresie uwzględniania aspektów ekologicznych i ochrony środowiska w procesach technologicznych i podejmowaniu decyzji
ZIIP_1A_U14ma umiejętności w zakresie przeprowadzenia analizy problemów mających bezpośrednie odniesienie do zdobytej wiedzy
Cel przedmiotuC-4Nauczenie umiejetności stosowania podstawowych zalezności matematycznych w bilansowaniu systemów energetycznych, ze szczególnym nastawieniem na systemy zasilane ze źródeł odnawialnych.
Treści programoweT-P-1Projekt powiązany z tematyka wykładu (projekt elektrowni/elektrociepłowni zasilanej z odnawialnego źrdóła energii)
Metody nauczaniaM-2Projekt
Sposób ocenyS-2Ocena formująca: Zaliczenie zajęć projektowyc polaega na przygotowaniu raportu oraz prezentacji wyników
Kryteria ocenyOcenaKryterium oceny
2,0Brak raportu lub przygotowanie raportu z duża ilością błędów, rzutujących na wynik końcowy.
3,0Przygotowanie raportu pisemnego, zawierającego znaczna ilość błęów i nieścisłości.
3,5Przygotowanie raportu pisemnego, zawierającego błędy i nieścisłości w zakresie .
4,0Przygotowanie raportu pisemnego, z niewielką ilością drobnych błędów oraz ustna prezentacja wyników.
4,5Przygotowanie raportu pisemnego, z minimalna ilością drobnych błędów oraz ustna prezentacja wyników
5,0Przygotowanie raportu pisemnego, bezbłędnego oraz ustna prezentacja wyników
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięZIIP_1A_IJZ/10-2_U02Po zaliczeniu zajęć laboratoryjnych student powinien umieć analizować przebieg procesu energetycznego, interpretować wpływ zmiany parametrow pracy sytemu na efektywność jego pracy, oceniać poprawność uzyskanych w wyniku eksperymentu wyników pomiarów i weryfikować ich poprawność wykorzystujac w tym celu wiedzę teoretyczną.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_U12ma umiejętności w zakresie uwzględniania aspektów ekologicznych i ochrony środowiska w procesach technologicznych i podejmowaniu decyzji
ZIIP_1A_U19potrafi wykorzystać w zadaniach inżynierskich metody analityczne, symulacyjne i eksperymentalne
Cel przedmiotuC-5Przedstawienie laboratoryjnych systemów konwersji energii odnawialnej, zapoznanie z zasadą działania oraz metodyką pomiaru wielkości pośrednich i obliczania efektywności procesu konwersji energii.
Treści programoweT-L-1Badanie siłowni fotowoltaicznej, badanie siłowni wiatrowej, badanie wartości opałowej biomasy, badanie pompy ciepła.
Metody nauczaniaM-3Laboratorium
Sposób ocenyS-3Ocena formująca: Aby zaliczyć laboratorium nalezy spełnić wymienione warunki: - należy przyjść na zajęcia przygotowanym do zajęć zgodnie z wytycznymi podanymi przez prowadzacego; - aktywnie uczestniczyć w zajęciach; - przygotować sprawozdanie z wykonanych zajęć i przekazać je prowadzącemu w ciagu 1 tygodnia od zajęć; poprawić błędy wskazane przez prowadzącego; -w wyznaczonym terminie podanym w harmonogramie laboratorium (dostepnym na stronie www.ktc.zut.edu.pl) uzyskać 61% punktów z zaliczenia.
Kryteria ocenyOcenaKryterium oceny
2,0nie oddanie któregokolwiek z 5 sprawozdań z zajęć laboratoryjnych, i/ lub nieobecność, i/lub niezaliczenie któregokolwiek z 5 zajęć laboratoryjnych
3,0oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 2,5-3,24 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
3,5oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 3,25-3,74 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
4,0oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 3,75-4,24 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
4,5oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 4,25-4,74 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)
5,0oddanie poprawnie wypełnionych sprawozdań z 5 zajęć laboratoryjnych, obecność na wszystkich zajęciach oraz zaliczenie kolokwiów cząstkowych na ocenę 4,75-5,0 (wyliczana jest średnia arytmetyczna z ocen cząstkowych)