Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty uczenia się | ICHP_2A_C07-09_K01 | Student zrozumie powagę problemów ochrony środowiska przed nadmiernym hałasem i wibracją. Osiągnie wiedzę i umiejętności pozwalające wspólpracować z ośrodkami zajmującymi się problemami czystości środowiska naturalnego. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | ICHP_2A_K01 | posiada świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego, potrafi inspirować i organizować proces uczenia się innych osób |
---|
ICHP_2A_K02 | ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje |
Cel przedmiotu | C-1 | Student osiagnie ogólną wiedzę w zakresie postępowania z odpadami w sposób zapewniający ochronę życia ludzi oraz środowiska naturalnego. Pozna szczególnie zasady zapobiegania powstawania odpadów oraz ich proekologiczne unieszkodliwienie. |
---|
C-2 | Student zapoznanie się z techniczną stronę utylizacji odpadów oraz podstawowymi wzorami dotyczaacymi projektowania wybranych sposobów gospodarki odpadami. |
Treści programowe | T-W-5 | Zjawiska na składowiskach odpadów. Komponety zagrożenia ekologicznego. Zagospodarowanie składowisk odpadów. Rekultywacja przy użyciu odpadów. Bilas wodny wysypiska odpadów. Modele systemu gospodarki odpadami. |
---|
T-W-7 | Recykling. Recykling materiałowy i energetyczny. Obciążenie środowiska. Operacje techniczne. Bilans materiałowy i energetyczny recyklingu. Schemat życia materiału opakowaniowego. Porządkowanie rynku recyklingu odpadów opakowaniowych. Podstawowe mozliwości odzysku meteriału z odpadów. Utylizacja opon. |
T-W-6 | Kompostowanie odpadów. Elementy biotechnologii i kinetyki rozkładu substancji. Fazy temperaturowe. Systemy technologioczne kompostowni. Jakość kompostu. Czynniki decydujęce o jakości kompostu. Obliczenia urządzeń. |
T-W-9 | Zestalanie odpadów. Wymagania. Mechanizmy. Badania laboratoryjne. |
T-W-10 | Monitoring gospodarki odpadami. Cele i zadania. Elementy monitoringu. Nowe koncepcje gospodarki odpadami. Nowoczesne koncepcje gospodarki odpadami. Schematy SIGOP. Schematy organizacji i zarządzania. Schematy odpowiedzialności. |
T-W-11 | Odpady ściekowe. Powstawanie odpadów. Badania fizyko-chemiczne. Urządzenie do przeróbki osadów ściekowych. WKF. Termiczne niszczenie osadów ściekowych. Przeróbka osadów śsciekowych. |
T-W-8 | Utylizacja termiczna odpadów. Decyzje za i przeciw budowy spalarni. Podstawowe metody utylizacji termicznej odpadów. Instalacje termicznego unieszkadliwiania odpadów. Dioksyny i furany. Źródła. Analiza. Ocena toksyczności. Zapobieganie powstawaniu dioksyn. Nowoczesne instalacje. |
T-W-2 | Metody unieszkodliwiania odpadów. Kryteria ocen technologii unieszkodliwienia odpadów. Logistyczny system gospodarki odpadami stałymi. Szczególne zasady gospodarowania niektórymi rodzajami odpadów. Decyzje i odpowiedzialność personalna. Gospodarka odpadami w świetle dyrektyw WE. |
T-W-1 | Statystyka odpadów. Syndrom NIMBY. Podział odpadów według sektorów gospodarki. Dane liczbowe. Ogólne charakterystyki odpadów orzemysłowych, komunalnych oraz osadów ściekowych i uzdatniania wody. Podstawowe pojęcia w gospodarce odpadami. Metody minimalizacji odpadów. |
T-W-3 | Systemy wspomagania decyzji w gospodarce odpadami. Problemy unieszkodłiwiania odpadów. Model decyzyjny. Modele matematyczne oszacowań powstawania odpadów. Kryteria ocen technologii unieszkodliwiania odpadów. |
T-W-4 | Analiza techniczna odpadów. Klasy szkodliwości odpadów. Składowanie odpadów. Zasady przydzielenia odpadów na składowiska. Klasyfikacja składowisk. Zasady i kryteria wyboru lokalizacji składowisk. Obliczenia geometrii składowiska odpadów. |
T-W-12 | Przegląd technik niszczenia odpadów z wybranych procesów fizycznych i chemicznych (fosfogipsy, odpady z rtecią, odpady paleniskowe, z hut żelaza, złomu sprzętu elektrotechnicznego, odpady z metalami ciężkimi, z zakładów mięsnych). Mogilniki. |
T-P-8 | Analiza projektu poprawionego (konsultacje indywidualne). |
T-P-5 | Zajęcia audytoryjne (konsultacje, zajęcia audytoryjne). Omówienie elementów niezbędnych do funkcjonowaniu składowiska odpadów lub liniii technologicznej kompostowni. |
T-P-4 | Zajecie audytoryjne (konsultacje, zajęcia audytoryjne ). Omówienie konfiguracji składowiska odpadów lub obiektów technicznych ciągu kompostowni. |
T-P-2 | Zajęcia audytoryjne (konsultacje, zajęcia audytoryjne).Obliczenie masy odpadów oraz niezbędnych wskaźników. |
T-P-3 | Zajęcia audytoryjne (konsultacje, zajęcia audytoryjne ). Omówienie geometrii składowiska odpadów lub ciągu technologicznego kompostownia. |
T-P-7 | Analiza poprawności projektów (konsultacje indywidualne). Zaliczenie projektu lub konieczność poprawienia. |
T-P-1 | Zajęcia audytoryjne (konsultacje, zajęcia audytoryjne ). Omówienie możliwości zrealizowania projektu składowiska odpadów lub ciągu procesu kompostowania odpadów. Wybór symulacyjnej (lub z jednostek osiedleńczych) bazy danych. |
T-P-6 | Zajęcia audytoryjne (konsultacje, zajęcia audytoryjne ). Omówienie problemów eksploatacji, zaplecza socjalnego oraz zespołu obsługi. |
Metody nauczania | M-1 | Wykład informacyjny. |
---|
M-2 | Projekt (Konsultacje, zajęcia audytoryjne). |
Sposób oceny | S-3 | Ocena podsumowująca: Ocena końcowa za przedmiot jest oceną średnią ważoną z ocen wszystkich form zajęć. |
---|
S-1 | Ocena podsumowująca: Zaliczenie wykładów w formie pisemnego sprawdzianu na zakończenie semestru o treści teoretycznej i obliczeniowej. |
S-2 | Ocena podsumowująca: Zalicznie treści tekstowej projektu oraz rysunków z uwzględnieniem wag. |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | Student nie jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami dynamiki procesowej i sterowania; nie jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania. |
3,0 | Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami dynamiki procesowej i sterowania; jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania. |
3,5 | Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami dynamiki procesowej i sterowania; jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania; jest chętny do samodzielnego formułowania problemów badawczych, projektowych i obliczeniowych. |
4,0 | Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami dynamiki procesowej i sterowania; jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe. |
4,5 | Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami dynamiki procesowej i sterowania; jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe; jest kreatywny w swoim działaniu. |
5,0 | Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami dynamiki procesowej i sterowania; jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe; jest kreatywny w swoim działaniu; postępuje zgodnie z zasadami etyki oraz wykazuje zdolność do kierowania zespołem zdeterminowanym do osiągnięcia założonego celu. |