Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)
Sylabus przedmiotu Fundamentals of Engineering Electromagnetics:
Informacje podstawowe
Kierunek studiów | Wymiana międzynarodowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | |||
Obszary studiów | — | ||
Profil | |||
Moduł | — | ||
Przedmiot | Fundamentals of Engineering Electromagnetics | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Elektrotechniki Teoretycznej i Informatyki | ||
Nauczyciel odpowiedzialny | Stanisław Gratkowski <Stanislaw.Gratkowski@zut.edu.pl> | ||
Inni nauczyciele | Krzysztof Stawicki <Krzysztof.Stawicki@zut.edu.pl> | ||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Mathematics (a knowledge of vector calculus is helpful, but not necessary, since a short introduction to vectors is provided); physics |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | This course is intended to present a unified approach to electromagnetic fields (advanced undergraduate level) |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Electrostatics: calculation of electric potential, energy and forces. Calculation of capacitances. | 10 |
T-L-2 | Static magnetic fields: calculation of magnetic field, inductances, magnetic energy and forces. | 10 |
T-L-3 | Time-varying electromagnetic fields: electromagnetic induction, skin effect, proximity effect, eddy currents. | 10 |
30 | ||
wykłady | ||
T-W-1 | Electromagnetic field concept. Vector analysis. | 2 |
T-W-2 | Electrostatics: Coulomb’s law, Gauss’s law and applications, electric potential, electric dipole, materials in an electric field, energy and forces, boundary conditions, capacitances and capacitors, Poisson’s and Laplace’s equations, method of images. | 4 |
T-W-3 | Steady electric currents. current density, equation of continuity, relaxation time, power dissipation and Joule’s law, boundary conditions. | 6 |
T-W-4 | Static magnetic fields: vector magnetic potential, the Biot-Savart law and applications, magnetic dipole, magnetic materials, boundary conditions, inductances, magnetic energy, forces and torques. | 6 |
T-W-5 | Time-varying electromagnetic fields and Maxwell’s equations: Faraday’s law, Maxwell’s equations, potential functions, time-harmonic fields, Poynting’s theorem, applications of electromagnetic fields. | 6 |
T-W-6 | Plane wave propagation: plane waves in lossless media, plane waves in lossy media, polarization of wave. Computer aided analysis of electromagnetic fields: finite element method, integral equations. | 6 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 30 |
30 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 30 |
A-W-2 | Samodzielne studiowanie literatury | 30 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Lectures with simple experiments, laboratory – computer simulations |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Lectures – written and oral exam; laboratory – continuous assessment |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WE_1-_??_W01 On successful completion of this course: Students will be familiar with the different vector operators used in Maxwells’ equations Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field Students will have an understanding of Maxwell’s equations Students will be able to select the most appropriate laws/theorems/ solution techniques for electromagnetic field analysis | — | — | C-1 | T-W-3, T-W-1, T-W-5, T-W-6, T-W-4, T-W-2 | M-1 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WE_1-_??_U01 On successful completion of this course: Students will be familiar with the different vector operators used in Maxwells’ equations Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field Students will have an understanding of Maxwell’s equations Students will be able to select the most appropriate laws/theorems/ solution techniques for electromagnetic field analysis | — | — | C-1 | T-L-3, T-L-2, T-L-1 | M-1 | S-1 |
WM_1-_null_U01 On successful completion of this course: Students will be familiar with the different vector operators used in Maxwells’ equations Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field Students will have an understanding of Maxwell’s equations Students will be able to select the most appropriate laws/theorems/solution techniques for electromagnetic field analysis. | — | — | C-1 | T-L-1, T-L-2, T-L-3 | M-1 | S-1 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WE_1-_??_W01 On successful completion of this course: Students will be familiar with the different vector operators used in Maxwells’ equations Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field Students will have an understanding of Maxwell’s equations Students will be able to select the most appropriate laws/theorems/ solution techniques for electromagnetic field analysis | 2,0 | |
3,0 | The student has knowledge of the Maxwell equations | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WE_1-_??_U01 On successful completion of this course: Students will be familiar with the different vector operators used in Maxwells’ equations Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field Students will have an understanding of Maxwell’s equations Students will be able to select the most appropriate laws/theorems/ solution techniques for electromagnetic field analysis | 2,0 | |
3,0 | Student can apply Maxwell's equations in practical problems | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
WM_1-_null_U01 On successful completion of this course: Students will be familiar with the different vector operators used in Maxwells’ equations Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field Students will have an understanding of Maxwell’s equations Students will be able to select the most appropriate laws/theorems/solution techniques for electromagnetic field analysis. | 2,0 | |
3,0 | Student can apply Maxwell's equations in practical problems | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Cheng D. K., Fundamentals of Engineering Electromagnetics., Addison-Wesley Publishing Company, Inc., New York, 1993
- Pollack G. L., Stump D. R., Electromagnetism, Addison Wesley Publishing Company, Inc., New York, 2002
- Stewart J. V., Intermediate Electromagnetic Theory, World Scientific Publishing Co. Pte. Ltd., London, 2001
- Chari M. V. K., Salon S. J., Numerical Methods in Electromagnetism, Academic Press, San Diego, 2000